• Title/Summary/Keyword: line integral

Search Result 296, Processing Time 0.022 seconds

Development of near field Acoustic Target Strength equations for polygonal plates and applications to underwater vehicles (근접장에서 다각 평판에 대한 표적강도 이론식 개발 및 수중함의 근거리 표적강도 해석)

  • Cho, Byung-Gu;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1062-1073
    • /
    • 2007
  • Acoustic Target Strength (TS) is a major parameter of the active sonar equation, which indicates the ratio of the radiated intensity from the source to the re-radiated intensity by a target. In developing a TS equation, it is assumed that the radiated pressure is known and the re-radiated intensity is unknown. This research provides a TS equation for polygonal plates, which is applicable to near field acoustics. In this research, Helmholtz-Kirchhoff formula is used as the primary equation for solving the re-radiated pressure field; the primary equation contains a surface (double) integral representation. The double integral representation can be reduced to a closed form, which involves only a line (single) integral representation of the boundary of the surface area by applying Stoke's theorem. Use of such line integral representations can reduce the cost of numerical calculation. Also Kirchhoff approximation is used to solve the surface values such as pressure and particle velocity. Finally, a generalized definition of Sonar Cross Section (SCS) that is applicable to near field is suggested. The TS equation for polygonal plates in near field is developed using the three prescribed statements; the redection to line integral representation, Kirchhoff approximation and a generalized definition of SCS. The equation developed in this research is applicable to near field, and therefore, no approximations are allowed except the Kirchhoff approximation. However, examinations with various types of models for reliability show that the equation has good performance in its applications. To analyze a general shape of model, a submarine type model was selected and successfully analyzed.

  • PDF

Numerical Analysis of J-integral Value in the Rectangular Plate with a Crack (균열(龜裂)을 가진 사각평판(四角平板)의 수치해법(數値解法)에 의(依)한 J-적분치(積分値))

  • D.S.,Kim;J.E.,Park
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.2
    • /
    • pp.35-42
    • /
    • 1984
  • A line integral is exhibited which has the same value for all paths surrounding the tip of crack in a two dimensional strain field of elastic-plasticc material. Finite element method was used to determine Rice's J-integral value in centrally cracked plate. These numerical J-integral values were compared with corresponding values of reference with low hardening and high yield strength. The J-integral value was also computed for a crack extension and different load condition. For increasing crack length the value of J-integral also increases, this means that the crack is unstable. To prove path independent, three paths were used in the analysis and proved.

  • PDF

Adaptive Controllers with Integral Action (적분 동작이 포함된 적응제어기)

  • 한홍석;양해원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.4
    • /
    • pp.220-225
    • /
    • 1988
  • A class of adaptive controllers with integral action is proposed, which may riject the offset due to any load disturbance on the plant. Effective integral action and robust identification against the offset can be achieved via the zero-gain predictor. The system is improved, in this paper, to be of more generalized structure, and the detuning control weight which can cope with nonminimum-phase systems is tuned on-line. Discrete-time versions of the improved system are developed, which may be more flexible for the choice of the design parameters. The resulting control systems may also be shown to be robust to the unmodelled dynamics.

  • PDF

Fast Calculation Algorithm for Line Integral on CT Reconstruction (CT 영상재구성을 위한 빠른 선적분 알고리즘)

  • Kwon Su, Chon;Joon-Min, Gil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.1
    • /
    • pp.41-46
    • /
    • 2023
  • Iterative reconstruction of CT takes a long time because projection and back-projection are alternatively repeated until taking a good image. To reduce the reconstruction time, we need a fast algorithm for calculating the projection which is a time-consuming step. In this paper, we proposed a new algorithm to calculate the line integral and the algorithm is approximately 10% faster than the well-known Siddon method (Jacobs version) and has a good image quality. Although the algorithm has been investigated for the case of parallel beams, it can be extended to the case of fan and cone beam geometries in the future.

Three Dimensional Calculation of Capacitance for VLSI Interconnection Line (VLSI 전송선로에서의 커패시턴스의 3차원 계산)

  • 김한구;곽계달
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.7
    • /
    • pp.64-72
    • /
    • 1992
  • The capacitance for three-dimensional (3D) VLSI interconnection line is calculated. Capacitance is obtained by solving integral equation that is the product of Green's function and surface charge density. Surface charge density is assumed that constant in each subarea, and subarea is devided by rectangular size in interconnetion surfaces. Up to date, so this integral method using Green's function is calculated by Fourier integral transformation, that it cannot help making an error. In this paper, it is proposed to use direct integration instead of Fourier integral method. And we proved accuracy of this paper in comparision with conventional results.

  • PDF

Closed-form Expressions of Vector Gravity and Gravity Gradient Tensor due to a Line Segment (선형 이상체에 의한 중력 및 중력 변화율 텐서 반응식)

  • Rim, Hyoungrea
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.1
    • /
    • pp.44-49
    • /
    • 2022
  • Closed-form expressions of vector gravity and gravity gradient tensor based on a line segment are derived. If a cylindrical object with axial symmetry is observed from a distance, it is possible to approximate it as a line segment; therefore, it is necessary to compute the gravity and the gravity gradient tensor due to a line source by using closed-form expressions. The gravitational potential for a line segment is defined as a one-dimensional integral, and this integral is differentiated with respect to the Cartesian coordinate system to derive the vector gravity. The expressions of the gravity gradient tensor are derived by differentiating the vector gravity once more in the same coordinate system.

Optimal Solution of integral Coefficients in Distance Relaying Algorithm for T/L Protection considering Frequency Characteristics (주파수 특성을 고려한 송전선 보호용 적분근사거리계전 알고리즘의 최적 적분 계수 결정)

  • Cho, Kyung-Rae;Hong, Jun-Hee;Jung, Byung-Tae;Cho, Jung-Hyun;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.42-44
    • /
    • 1994
  • This paper presents the method of estimating integral coefficients of new distance relaying algorithm for transmission line protection. The proposed method is based on the differential equation calculates impedance value by approximation of integral term of integro-differential equation which relate voltage with current. As a result, we can determine the integral coefficients in least square error sense in frequency domain and we take into consideration the analog filter characteristics and frequency domain characteristics of the system to be protected. The simulation results showed that these coefficients can be successfully used to obtain impedance value in distance relay.

  • PDF

SOLVABILITY AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR SOME NONLINEAR INTEGRAL EQUATIONS RELATED TO CHANDRASEKHAR'S INTEGRAL EQUATION ON THE REAL HALF LINE

  • Mahmoud Bousselsal;Daewook Kim;Jong Kyu Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.57-79
    • /
    • 2023
  • We investigate the existence and uniform attractivity of solutions of a class of functional integral equations which contain a number of classical nonlinear integral equations as special cases. Using the technique of measures of noncompactness and a fixed point theorem of Darbo type we prove the existence of solutions of these equations in the Banach space of continuous and bounded functions on the nonnegative real half axis. Our results extend and improve some known results in the recent literature. An example illustrating the main result is presented in the last section.

An EMM Approach to Derive an Energy Integral for the Direct Method of Stability Analysis in Power Systems

  • Moon, Young-Hyun
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.58-69
    • /
    • 1996
  • This paper presents a new approach to derive an energy integral based on an Equivalent Mechanical Model(EMM), which is developed by introducing imaginary springs for line resistances. The proposed EMM shows that phasor currents and voltages are directly analogous to the two-dimensional force and displacement vectors, respectively. Through rigorous energy analysis of the proposed EMM, an exact energy integral expression is derived for multimachine systems, and several useful theorems are developed to derive an energy integral for power systems with detailed generator models the energy integral exactly reflects the internal resistance, saliency and flux-decaying effects of the generator. Finally, an illustrative example is given for a multimachine system adopting the Eq'-model for generators, which shows that the consideration of a detailed generator model does not aggravate the complicacy of the direct method of stability analysis in multimachine systems.

  • PDF

The Expressions of Vector Gravity and Gravity Gradient Tensor due to an Elliptical Cylinder (타원 기둥에 의한 벡터 중력 및 중력 변화율 텐서 반응식)

  • Hyoungrea Rim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • This study derives the expressions of vector gravity and gravity gradient tensor due to an elliptical cylinder. The vector gravity for an arbitrary three-dimensional (3D) body is obtained by differentiating the gravitational potential, including the triple integral, according to the shape of the body in each axis direction. The vector gravity of the 3D body with axial symmetry is integrated along the axial direction and reduced to a double integral. The complex Green's theorem using complex conjugates subsequently converts the double integral into a one-dimensional (1D) closed-line integral. Finally, the vector gravity due to the elliptical cylinder is derived using 1D numerical integration by parameterizing a boundary of the elliptical cross-section as a closed line. Similarly, the gravity gradient tensor due to the elliptical cylinder is second-order differentiated from the gravitational potential, including the triple integral, and integrated along the vertical axis direction reducing it to a double integral. Consequently, all the components of the gravity gradient tensor due to an elliptical cylinder are derived using complex Green's theorem as used in the case of vector gravity.