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Abstract. We investigate the existence and uniform attractivity of solutions of a class of

functional integral equations which contain a number of classical nonlinear integral equations

as special cases. Using the technique of measures of noncompactness and a fixed point

theorem of Darbo type we prove the existence of solutions of these equations in the Banach

space of continuous and bounded functions on the nonnegative real half axis. Our results

extend and improve some known results in the recent literature. An example illustrating the

main result is presented in the last section.

1. Introduction

Nonlinear functional-integral equations have wide application in many bran-
ches of sciences [14], [16] such as in the theory of optimal control, economics,
engineering, mechanics, physics, optimization [7], queing theory and so on.
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The theory of integral equations is rapidly developing with the help of tools
in functional analysis topology and fixed point theory. In this paper, we are
interested with the following nonlinear functional-integral equations:

x(t) = f1 (t, (T1x) (t)) (1.1)

+f5

(
t, f2 (t, (T2x) (t))

∫ +∞
0 u (t, s, x(s)) ds,

f3 (t, (T3x) (t))
∫ +∞
0 k(t, s)f4(s, x(s))ds

)
,

where t ≥ 0, fi : R+ × R −→ R, i = 1, 2, 3.4, f5 : R+ × R × R −→ R, u :
R+ × R+ × R −→ R, k : R+ × R+ −→ R and Tj : R+ −→ R, j = 1, 2, 3 are
given while x(t) is an unknown function.

In this study, we investigate a more general class of nonlinear integral equa-
tions which contain a number of classical nonlinear integral equations as par-
ticular cases. Some special cases of Eq.(1.1) have been investigated by various
authors. In [1], Argarwal and O’Regan gave the existence of solutions for the
nonlinear integral equation:

x(t) =

∫ +∞

0
k(t, s)f(s, x(s))ds, t ∈ R+ (1.2)

in the space of bounded and continuous functions Cl [0,+∞) which have limit
at infinity. Meehan and O’Regan [19] discussed the existence of solutions for
the nonlinear integral equation:

x(t) = h(t) + µ

∫ +∞

0
k(t, s)f(s, x(s))ds, t ∈ R+ (1.3)

in the space Cl [0,+∞) and the existence of solutions for the nonlinear equa-
tion:

x(t) = h(t) +

∫ +∞

0
k(t, s) [f(x(s)) + g(x(s))] ds, t ∈ R+ (1.4)

in the space BC (R+,R) of bounded and continuous functions on R+.

Later in 2001 [19], they established the existence of at least one positive
solution for the nonlinear integral equation

x(t) = h(t) +

∫ +∞

0
k(t, s)f(s, x(s))ds, t ∈ R+ (1.5)

in the space Lp (R+) .

In 2004, Banaś and Poludniak [5] investigated the monotonic solutions for
the nonlinear integral equation

x(t) = f(t) +

∫ +∞

0
u(t, s, x(s))ds, t ∈ R+ (1.6)

in the space of Lebesgue integrable functions on unbounded interval by using
the Darbo fixed point theorem and the measure of noncompactness.
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In 2006 Banaś and Martin [6] studied the existence and asymptotic stability
of the solutions for the nonlinear equation

x(t) = g(t) + f(t, x(t))

∫ +∞

0
K(t, s)h(s, x(s))ds, t ∈ R+ (1.7)

in the Banach space BC (R+,R) .

In 2004, Cabellaro et al., [13], In 2008 [3] and in 2013 Darwish et al. [15]
studied the existence of the solutions for the Urysohn integral equation defined
on an unbounded interval

x(t) = a(t) + f(t, x(t))

∫ +∞

0
u(t, s, x(s))ds, t ∈ R+ (1.8)

with the help of measure of noncompactness and a fixed point theorem in the
space BC (R+,R). Of course authors studied integral equation (1.8) under
different assumptions and measure of noncompactness, also they have rather
different existence theorems.

Very recently, in 2016 [23] and in 2017 [22], Ozdemir and Ilhan studied
the existence and uniform attractivity of the solutions of a class of nonlinear
integral equations on an unbounded interval

x(t) = (T1x) (t) + (T2x) (t)

∫ +∞

0
u(t, s, x(s))ds, t ∈ R+ (1.9)

with the help of measure of noncompactness and a fixed point theorem in the
space BC (R+,R) .

Motivated by recent researches in this field, we study the more general
nonlinear functional integral equation (1.1) .This equation encompasses many
important integral and functional equations that arise in nonlinear analysis
and its applications, in particular integral equations (1.1), (1.2), (1.3), (1.4),
(1.5), (1.6) , (1.7), (1.8), (1.9) see also [8, 9, 10, 11, 24, 25] for more other special
cases and the references therein. Using the technique of a suitable measure
of noncompactness, we prove an existence theorem and uniform attractivity
of the solutions of (1.1) . We give an example satisfying the conditions of our
results given in this paper.

2. Preliminaries

In this section, we give a collection of auxiliary facts which will be needed
further on. Assume that (E, ‖.‖) is a real Banach space with zero element θ.
Let B (x, r) denote the closed ball centered at x and with radius r. The symbol
Br stands for the ball B (θ, r). If X is a subset of E, then X and ConvX
denote the closure and convex hull of X, respectively. With the symbols λX
and X + Y , we denote the standard algebraic operations on sets. Moreover,



60 M. Bousselsa, D. Kim and J. K. Kim

we denote by ME the family of all nonempty and bounded subsets of E and
NE its subfamily consisting of all relatively compact subsets. The definition
of the concept of a measure of noncompactness presented bellow comes from
[2].

Definition 2.1. ([2]) A mapping µ : ME → R+ = [0,+∞[ is said to be a
measure of noncompactness in E if it satisfies following conditions:

(1) The family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊂
NE ,

(2) X ⊂ Y =⇒ µ(X) ≤ µ(Y ),
(3) µ(X) = µ(ConvX) = µ(X),
(4) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)Y , for λ ∈ [0, 1],
(5) If {Xn} is a sequence of nonempty, bounded and closed subsets of E

such that Xn+1 ⊂ Xn (n = 1, 2, · · · ) and lim
n→∞

µ(Xn) = 0, then the set

X∞ = ∩∞n=1Xn is nonempty.

Observe that the intersection set X∞ belongs to kerµ. Indeed, since µ(X∞)
≤ µ(Xn) for any n, we infer µ(X∞) = 0, so X∞ ∈ kerµ. This simple remark
will be crucial in our further considerations. For other facts concerning mea-
sures of noncompactness we refer to [2].

In the sequel, we will work in the Banach space BC(R+,R) consisting of all
real functions defined, continuous and bounded on R+. The space BC(R+,R)
is equipped with the standard norm

‖x‖ = sup {|x(t| ; t ∈ R+} .
We will use a measure of noncompactness in the space BC(R+,R). In order to
define this measure, let us fix a nonempty subset X of BC(R+,R). For x ∈ X,
ε ≥ 0 and T > 0 denoted by ωT (x, ε) the modulus of continuity of function
x, that is,

ωT (x, ε) = sup {|x(s)− x(t)| : t, s ∈ [0, T ] and |t− s| ≤ ε} .
Further let us set

ωT (X, ε) = sup
{
ωT (x, ε), x ∈ X

}
,

ωT0 (X) = lim
ε→0

ωT (X, ε)

and
ω0(X) = lim

T→∞
ωT0 (X). (2.1)

Moreover, if t ∈ R+ is a fixed number, let us denote

X(t) = {x(t) : x ∈ X}
and

diam X(t) = sup {|x(t)− y(t)| : x, y ∈ X} .
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With help of the above mappings, we define the following measure of noncom-
pactness in BC(R+,R) [2]

µ(X) = ω0(X) + lim sup
t→∞

diam X(t). (2.2)

It can be shown [2] that the function µ is a sublinear measure of noncompact-
ness with the maximum property in the space BC(R+,R). The kernel kerµ
of this measure contains nonempty and bounded sets X such that functions
from X are locally equicontinuous on R+ and they tend to zero at infinity
uniformly with respect to the set X. This property of the kernel kerµ allows
us to characterize in terms of asymptotic behavior solutions of the functional
integral equations (1.1).

Now we recall definitions of the concepts of global attractivity, local attrac-
tivity and asymptotic stability of the solutions of operator equations. Those
definitions may be found in papers [4], [7], [12], [18]. Here we arrange those
definitions and we establish relations among them.

Let Ω be a nonempty subset of the space BC(R+,R) and Q be an operator
acting from Ω into BC(R+,R).

Let us consider the following operator equation:

x(t) = (Qx)(t), t ∈ R+. (2.3)

Definition 2.2. The solution x = x(t) of Eq.(2.3) is said to be globally
attractive if for each solution y = y(t) of Eq.(2.3) we have that

lim
t→+∞

(x(t)− y(t)) = 0. (2.4)

Other words we may that solutions of Eq.(2.3) are globally attractive if for
arbitrary solutions x(t) and y(t) of this equation, condition is satisfied.

Definition 2.3. We say that solutions of Eq.(2.3) are locally attractive if
there exists a ball B(x0, r) in the space BC(R+,R) such that for arbitrary
solutions x(t) and y(t) of Eq.(2.3) belonging to B(x0, r) ∩ Ω, condition (2.4)
does hold.

In the case when the limit (2.4) is uniform with respect to the set B(x0, r)∩
Ω, that is, when for each ε > 0 there exists T > 0 such that

|x(t)− y(t)| ≤ ε (2.5)

for all x(t), y(t) of Eq.(2.3) from B(x0, r) ∩ Ω and for t ≥ T , we will say that
Eq.(2.3) are uniformly locally attractive. For more detail about the uniform
global attractivity, the reader can see for instance [17].

Finally, we will make use of the following fixed point theorem [3] which is
the main tool for our proof.
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Theorem 2.4. Let Q be a nonempty, bounded, closed and convex subset of a
Banach space E and let

F : Q −→ Q

be a continuous transformation such that µ (FX) ≤ kµ (X) for any nonempty
subset X of Q, where µ is a measure of noncompactness in E and k ∈ [0, 1[ is
a constant. Then F has a fixed point in the set Q.

Remark 2.5. Denote by Fix(F ) the set of all fixed points of the operator
F belonging to Q. It can be readily seen that the set Fix(F ) belongs to the
family kerµ, see [2]

The aim of this paper is to study the existence of solutions for Eq.(1.1) under
suitable conditions. Tools used in this paper are the technique of measure of
noncompactness and Darbo fixed point theorem [3]. We obtain some results
about the asymptotic stability of solutions. Finally, an example illustrating
the main result is presented in the last section.

3. Main results

Equation (1.1) will be studied under the following assumptions:

(1) The operators Ti : BC(R+,R) −→ BC(R+,R) are continuous and
there exist continuous nondecreasing functions di : R+ → R+ such
that

|(Tix)(t)| ≤ di (‖x‖) , i = 1, 2, 3.

for all x ∈ BC(R+,R) and t ∈ R+.

(2) The function u : R+×R+×R −→ R is continuous and there exist func-

tions a, b : R+ −→ R+ such that lim
t→+∞

a(t) = 0, ‖b‖1 =
∫ +∞
0 |b(s)| ds <

+∞ and a continuous nondecreasing function h : R+ −→ R+ such
that

|u (t, s, x)| ≤ a(t)b(s)h(|x|)
for all (t, s, x) ∈ R+ × R+ × R.

(3) There exists a continuous nondecreasing function ϕr0 : R+ −→ R+

which holds ϕr0(0) = 0 and

|u (t2, s, x)− u (t1, s, x)| ≤ ϕr0 (|t2 − t1|) τ(s)

for all t2, t1, s ∈ R+ and x ∈ R with |x| ≤ r0, where τ is an element of

the space BC(R+,R+) such that
∫ +∞
0 τ(s)ds < +∞.



Solvability and asymptotic behavior of solutions 63

(4) There exists a continuous nondecreasing function ηr0 : R+ −→ R+

which holds ηr0(0) = 0 and

|u (t, s, x)− u (t, s, y)| ≤ ηr0 (|x− y|) v(s)

for all t, s ∈ R+ and x, y ∈ R with |x| ≤ r0, |y| ≤ r0, where v is an

element of the space BC(R+,R+) such that
∫ +∞
0 v(s)ds < +∞.

(5) fi : R+×R→ R are continuous functions and there exist li :R+ → R+

functions of the space BC(R+,R+) with bounds Li such that

|fi(t, x)− fi(t, y)| ≤ li(t) |x− y| , i = 1, 2, 3

for any t ∈ R+ and for all x, y ∈ R. fi(t, 0) are elements of the space
BC(R+,R+) such that fi = sup

t∈R+

|fi(t, 0)|, i = 1, 2, 3.

(6) f5 : R+ × R × R → R is a continuous function and there exist li :
R+ → R+ functions of the space BC(R+,R+) with bounds Li, i = 5, 6,
such that

|f5(t, a, x)− f5(t, a, y)| ≤ l5(t) |x− y| ,
|f5(t, a, x)− f5(t, b, x)| ≤ l6(t) |a− b| ,

for all t ∈ R+ and x, y, a, b ∈ R where f5(t, 0, 0) is an element of the
space BC(R+,R) such that f5 = sup

t∈R+

|f5(t, 0, 0)|.

(7) There exists a nonnegative constant L such that

max {Li, i = 1, 2, 3, 5, 6} ≤ L.

(8) f4 : R+ × R → R is uniformly continuous function on every rectangle
of the form R+ × [−α, α] and there exists a continuous function ρ :
R+ → R+ and a continuous and nondecreasing function d4 : R+ → R+

such that
|f4 (t, x)| ≤ ρ(t)d4(|x|)

for any t ∈ R+ and for all x ∈ R.

(9) k : R+×R→ R is a continuous function and there exist p, q :R+ → R+

continuous functions such that q(t) and ρ(t)q(s) are integrable over R+

with the following inequality

|k(t, s)| ≤ p(t)q(s)
for any t ∈ R+ and for all x ∈ R. Moreover, we assume that

lim
t−→+∞

p(t) = 0.

Keeping in mind the above assumptions, we can easily infer that the
constants Q,P are defined by the formulas:

P = sup {p(t), t ≥ 0} and Q =
∫ +∞
0 ρ(s)q(s)ds are finite.
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(10) There exists a positive real number r0 satisfying the inequality

Ld1 (r0) + f1 + L
{
Ld2 (r0) + f2

}
h (r0) ‖a‖ ‖b‖1 (3.1)

+L
{
Ld3 (r0) + f3

}
d4 (r0)PQ+ f5 ≤ r0.

(11) There exist the nonnegative constants αi for r0 such that the inequality

µ (TiX) ≤ αiµ (X) (3.2)

holds for all nonempty and bounded set X of the ball Br0 , (i = 1, 2, 3).

(12) K = max
{
α1L,L

2h(r0) ‖a‖ ‖b‖1 α2, PQd4(r0)α3

}
< 1.

Theorem 3.1. Under assumptions (1)−(12), there exists r0 ∈ ]0, 1[ such that
the equation (1.1) has at least one solution in Br0 ⊂ BC(R+,R). Also, these
solutions are uniformly locally attractive.

Proof. We define an operator F on BC(R+,R) for t ≥ 0 as follows

(Fx)(t) = f1 (t, (T1x) (t)) (3.3)

+ f5

(
t, f2 (t, (T2x) (t))

∫ +∞
0 u (t, s, x(s)) ds,

f3 (t, (T3x) (t))
∫ +∞
0 k(t, s)f4(s, x(s))ds

)
.

Notice that in view of assumptions (1) − (9), the function t → (Fx) (t) is
well-defined on the interval R+. At first we show that the function (Fx) is
continuous on R+. To do this fix arbitrary T > 0 and ε ≥ 0. Take arbitrary
numbers t, t0 ∈ [0, T ] with |t− t0| ≤ ε.

|(Fx) (t)− (Fx) (t0)| ≤ |f1 (t, (T1x) (t))− f1 (t0, (T1x) (t0))|

+

∣∣∣∣∣∣∣∣
f5

(
t, f2 (t, (T2x) (t))

∫ +∞
0 u (t, s, x(s)) ds,

f3 (t, (T3x) (t))
∫ +∞
0 k(t, s)f4(s, x(s))ds

)
−f5

(
t0, f2 (t0, (T2x) (t0))

∫ +∞
0 u (t0, s, x(s)) ds,

f3 (t0, (T3x) (t0))
∫ +∞
0 k(t0, s)f4(s, x(s))ds

)
∣∣∣∣∣∣∣∣ .

(3.4)

From (3.4) , we get

|(Fx) (t)− (Fx) (t0)| ≤ |f1 (t, (T1x) (t))− f1 (t0, (T1x) (t))|
+ |f1 (t0, (T1x) (t))− f1 (t0, (T1x) (t0))|
≤ ωTd1(r0)(f1, ε) + LωT (T1x, ε) (I)

+

∣∣∣∣∣∣∣∣
f5

(
t, f2 (t, (T2x) (t))

∫ +∞
0 u (t, s, x(s)) ds,

f3 (t, (T3x) (t))
∫ +∞
0 k(t, s)f4(s, x(s))ds

)
−f5

(
t, f2 (t, (T2x) (t))

∫ +∞
0 u (t, s, x(s)) ds,

f3 (t, (T3x) (t))
∫ +∞
0 k(t0, s)f4(s, x(s))ds

)
∣∣∣∣∣∣∣∣ (II)
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+

∣∣∣∣∣∣∣∣
f5

(
t, f2 (t, (T2x) (t))

∫ +∞
0 u (t, s, x(s)) ds,

f3 (t, (T3x) (t))
∫ +∞
0 k(t0, s)f4(s, x(s))ds

)
−f5

(
t, f2 (t, (T2x) (t))

∫ +∞
0 u (t, s, x(s)) ds,

f3 (t, (T3x) (t0))
∫ +∞
0 k(t0, s)f4(s, x(s))ds

)
∣∣∣∣∣∣∣∣ (III)

+

∣∣∣∣∣∣∣∣
f5

(
t, f2 (t, (T2x) (t))

∫ +∞
0 u (t, s, x(s)) ds,

f3 (t, (T3x) (t0))
∫ +∞
0 k(t0, s)f4(s, x(s))ds

)
−f5

(
t, f2 (t, (T2x) (t))

∫ +∞
0 u (t, s, x(s)) ds,

f3 (t0, (T3x) (t0))
∫ +∞
0 k(t0, s)f4(s, x(s))ds

)
∣∣∣∣∣∣∣∣ (IV)

+

∣∣∣∣∣∣∣∣
f5

(
t, f2 (t, (T2x) (t))

∫ +∞
0 u (t, s, x(s)) ds,

f3 (t0, (T3x) (t0))
∫ +∞
0 k(t0, s)f4(s, x(s))ds

)
−f5

(
t, f2 (t, (T2x) (t))

∫ +∞
0 u (t0, s, x(s)) ds,

f3 (t0, (T3x) (t0))
∫ +∞
0 k(t0, s)f4(s, x(s))ds

)
∣∣∣∣∣∣∣∣ (V)

+

∣∣∣∣∣∣∣∣
f5

(
t, f2 (t, (T2x) (t))

∫ +∞
0 u (t0, s, x(s)) ds,

f3 (t0, (T3x) (t0))
∫ +∞
0 k(t0, s)f4(s, x(s))ds

)
−f5

(
t, f2 (t, (T2x) (t0))

∫ +∞
0 u (t0, s, x(s)) ds,

f3 (t0, (T2x) (t0))
∫ +∞
0 k(t0, s)f4(s, x(s))ds

)
∣∣∣∣∣∣∣∣ (VI)

+

∣∣∣∣∣∣∣∣
f5

(
t, f2 (t, (T2x) (t0))

∫ +∞
0 u (t0, s, x(s)) ds,

f3 (t0, (T3x) (t0))
∫ +∞
0 k(t0, s)f4(s, x(s))ds

)
−f5

(
t, f2 (t0, (T2x) (t0))

∫ +∞
0 u (t0, s, x(s)) ds,

f3 (t0, (T3x) (t0))
∫ +∞
0 k(t0, s)f4(s, x(s))ds

)
∣∣∣∣∣∣∣∣ (VII)

+

∣∣∣∣∣∣∣∣
f5

(
t, f2 (t0, (T2x) (t0))

∫ +∞
0 u (t0, s, x(s)) ds,

f3 (t0, (T3x) (t0))
∫ +∞
0 k(t0, s)f4(s, x(s))ds

)
−f5

(
t0, f2 (t0, (T2x) (t0))

∫ +∞
0 u (t0, s, x(s)) ds,

f3 (t0, (T3x) (t0))
∫ +∞
0 k(t0, s)f4(s, x(s))ds

)
∣∣∣∣∣∣∣∣ . (VIII)

Further, we have the following chain of estimates

(II) ≤ L |f3 (t, (T3x) (t))|
∫ +∞

0
|k(t, s)− k(t0, s)| |f4(s, x(s))| ds (3.5)

≤
(
L2 |(T3x) (t)|+ Lf3

) ∫ +∞

0
|k(t, s)− k(t0, s)| ρ(s)d4(|x(s)|)ds

≤
(
L2 |(T3x) (t)|+ Lf3

)
d4(‖x‖)

∫ +∞

0
|k(t, s)− k(t0, s)| ρ(s)ds.
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Furthermore we can obtain the following estimates∫ +∞

0
|k(t, s)− k(t0, s)| ρ(s)ds ≤

∫ T

0
|k(t, s)− k(t0, s)| ρ(s)ds (3.6)

+

∫ +∞

T
(|k(t, s)|+ |k(t0, s)|) ρ(s)ds

≤ ρTTω
T (k, ε)

+

∫ +∞

T
(|p(t)|+ |p(t0)|) q(s)ρ(s)ds

≤ ρTTω
T (k, ε) + 2PT

∫ +∞

T
q(s)ρ(s)ds,

where PT = sup {p(t) : t ≥ T} and ρT = sup {ρ(t) : t ∈ [0, T ]}.
Hence we get

(II) ≤
(
L2d3 (‖x‖) + Lf3

)
d4(‖x‖)

(
ρTTω

T (k, ε) + 2PTQ
)
. (3.7)

Further, we use assumptions (8) and (9) , we have

(III) ≤ L |f3 (t, (T3x) (t))− f3 (t, (T3x) (t0))| (3.8)

×
∫ +∞

0
k(t0, s) |f4(s, x(s))| ds

≤ L2 |(T3x) (t)− (T3x) (t0)|

×
∫ +∞

0
p(t0)q(s)ρ(s)d4(|x(s)|)ds

≤ L2ωT (T3X, ε)PQd4(‖x‖).

Similarly, we get

(IV) ≤ L |f3 (t, (T3x) (t0))− f3 (t0, (T3x) (t0))| (3.9)

×
∫ +∞

0
k(t0, s) |f4(s, x(s))| ds

≤ LωTd3(r0)(f3, ε)PQd4(‖x‖).

Using assumption (4) and the fact that

|f2 (t, (T2x) (t))| ≤ |f2 (t, (T2x) (t))− f2 (t, 0)|+ |f2 (t, 0)|
≤ L |(T2x) (t)|+ f2,
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we obtain

(V) ≤ L |f2 (t, (T2x) (t))|
∫ +∞

0
|u(t, s, x(s))− u(t0, s, x(s))| ds (3.10)

≤ L
[
L |(T2x) (t)|+ f2

] ∫ +∞

0
|u(t, s, x(s))− u(t0, s, x(s))| ds

≤
(
L2d2(‖x‖) + Lf2

)
ϕr0 (ε) ‖τ‖1 .

Using assumptions (2) , (5) and (7) , we get

(VI) ≤ L |f2 (t, (T2x) (t))− f2 (t, (T2x) (t0))| (3.11)

×
∫ +∞

0
|u(t0, s, x(s))| ds

≤ L2 |(T2x) (t)− (T2x) (t0)|
∫ +∞

0
|u(t0, s, x(s))| ds

≤ L2ωT (T2X, ε)h(‖x‖) ‖a‖ ‖b‖1 .
and

(VII) ≤ L |f2 (t, (T2x) (t0))− f2 (t, (T2x) (t))| (3.12)

×
∫ +∞

0
|u(t0, s, x(s))| ds

≤ LωTd2(r0)(f2, ε)h(‖x‖) ‖a‖ ‖b‖1 .

Next, we can write the last term as following

(VII) = ωTA,B(f5, ε). (3.13)

From (I)-(VIII) and (3.5)-(3.13) , we obtain

|(Fx) (t)− (Fx) (t0)| ≤ ωTd1(r0)(f1, ε) + LωT (T1x, ε) (3.14)

+
(
L2d3 (‖x‖) + Lf3

)
d4(‖x‖)

×
(
ρTTω

T (k, ε) + 2PTQ
)

+L2ωT (T3x, ε)PQd4(‖x‖)
+LωTd3(r0)(f3, ε)PQd4(‖x‖)

+
(
L2d2(‖x‖) + Lf2

)
ϕr0 (ε) ‖τ‖1

+L2ωT (T2x, ε)h(‖x‖) ‖a‖ ‖b‖1
+LωTd2(r0)(f2, ε)h(‖x‖) ‖a‖ ‖b‖1
+ωTA2,A3

(f5, ε),

where we denoted by
ωTd (fi, ε) = sup {|fi (t, x)− fi (t0, x)| : t, t0 ∈ [0, T ] , |t− t0| ≤ ε, x ∈ [−d, d]} ,
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ωT (fi, ε) = sup {|fi (t)− fi (t0)| : t, t0 ∈ [0, T ] , |t− t0| ≤ ε} , i = 1, 2, 3,
ωT (k, ε) = sup {|k (t)− k (t0)| : t, t0 ∈ [0, T ] , |t− t0| ≤ ε}
and

ωT‖A2‖,‖A3‖(f, ε) = sup

{
|f (t, x, y)− f (t0, x, y)| : t, t0 ∈ [0, T ] , |t− t0| ≤ ε,

x ∈ [−‖A2‖ , ‖A2‖] , y ∈ [−‖A3‖ , ‖A3‖]

}
.

In view of our assumption, we infer that the functions fi are uniformly con-
tinuous on [0, T ]× [−di(r0), di(r0)] , i = 1, 2, 3 and the function f5 is uniformly
continuous on [0, T ]× [−‖A2‖ , ‖A2‖]× [−‖A3‖ , ‖A3‖]. Hence, we deduce that
ωT (Tix, ε) , ω

T (k, ε), convergent to 0 as ε −→ 0, where

‖A2‖ =
{
Ld2 (‖x‖) + f2

}
h (‖x‖) ‖a‖ ‖b‖1

and

‖A3‖ =
{
Ld3 (‖x‖) + f3

}
d4 (‖x‖)PQ.

Thus we have that (Fx) is continuous on [0, T ] . We can choose T in such away
the term appearing PT becomes sufficiently small, (Fx) is continuous on R+.

Further, we show that (Fx) is bounded on R+. Indeed, by our assumptions,
for arbitrary fixed t ∈ R+, setting

A2(t) = f2 (t, (T2x) (t))

∫ +∞

0
u (t, s, x(s)) ds

and

A3(t) = f3 (t, (T3x) (t))

∫ +∞

0
k(t, s)f4(s, x(s))ds.

We obtain

(Fx) (t) = f1 (t, (T1x) (t)) + f5 (t, A2(t), A3(t))

and

|A2(t)| ≤ |f2 (t, (T2x) (t))|
∫ +∞

0
|u (t, s, x(s))| ds

≤ {|f2 (t, (T2x) (t))− f2 (t, 0)|+ |f2 (t, 0)|}

×
∫ +∞

0
|u (t, s, x(s))| ds

≤
{
L |(T2x) (t)|+ f2

}∫ +∞

0
|u (t, s, x(s))| ds

≤
{
Ld2 (‖x‖) + f2

}
h (‖x‖) ‖a‖ ‖b‖1 .

Therefore

‖A2‖ ≤
{
Ld2 (‖x‖) + f2

}
h (‖x‖) ‖a‖ ‖b‖1 . (3.15)
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Similarly, we have

|A3(t)| ≤ |f3 (t, (T3x) (t))|
∫ +∞

0
k(t, s) |f4(s, x(s))| ds

≤
{
Ld3 (‖x‖) + f3

}
d4 (‖x‖)PQ (3.16)

and

‖A3‖ ≤
{
Ld3 (‖x‖) + f3

}
d4 (‖x‖)PQ. (3.17)

We derive From (3.15) and (3.17)

|(Fx) (t)| ≤ |f1 (t, (T1x) (t))− f1 (t, 0)|+ |f1 (t, 0)| (3.18)

+ |f5 (t, A2(t), A3(t))|
≤ L |(T1x) (t)|+ f1 + |f5 (t, A2(t), A3(t))− f5 (t, A2(t), 0)|

+ |f5 (t, A2(t), 0)− f5 (t, 0, 0)|+ f5

≤ Ld1 (‖x‖) + f1 + L |A3(t)|+ L |A2(t)|
≤ Ld1 (‖x‖) + f1 + L

{
Ld2 (‖x‖) + f2

}
h (‖x‖) ‖a‖ ‖b‖1

+L
{
Ld3 (‖x‖) + f3

}
d4 (‖x‖)PQ+ f5,

which implies that the function (Fx) is bounded on R+. Combining this fact
with the continuity of the function (Fx) on R+, we conclude that the operator
F transforms the ball Br0 into the space BC (R+,R). The inequality (3.18) in
conjuction with assumption (10) ensures that there exists a positive number
r0 for which the operator F transforms the ball Br0 into itself. Further we
shall prove the operator F is continuous on Br0 . To do this, consider ε > 0
and take x, y0 ∈ Br0 such that ‖x− y0‖ ≤ ε. Then, for arbitrary t ∈ R+, we
get

|(Fx) (t)− (Fy0) (t)| ≤ |f1 (t, (T1x) (t))− f1 (t, (T1y0) (t))|

+

∣∣∣∣∣∣∣∣∣∣
f5

(
t, f2 (t, (T2x) (t))

∫ +∞
0 u (t, s, x(s)) ds,

f3 (t, (T3x) (t))
∫ +∞
0 k(t, s)f4(s, x(s))ds

)

−f5
(

t, f2 (t, (T2y0) (t))
∫ +∞
0 u (t, s, y0(s)) ds,

f3 (t, (T3y0) (t))
∫ +∞
0 k(t, s)f4(s, y0(s))ds

)
∣∣∣∣∣∣∣∣∣∣
.

Therefore, we have

|(Fx) (t)− (Fy0) (t)| ≤ |f1 (t, (T1x) (t))− f1 (t, (T1y0) (t))|

+

∣∣∣∣∣∣∣∣∣∣
f5

(
t, f2 (t, (T2x) (t))

∫ +∞
0 u (t, s, x(s)) ds,

f3 (t, (T3x) (t))
∫ +∞
0 k(t, s)f4(s, x(s))ds

)

−f5
(

t, f2 (t, (T2y0) (t))
∫ +∞
0 u (t, s, x(s)) ds,

f3 (t, (T3x) (t))
∫ +∞
0 k(t, s)f4(s, x(s))ds

)
∣∣∣∣∣∣∣∣∣∣
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+

∣∣∣∣∣∣∣∣∣∣
f5

(
t, f2 (t, (T2y0) (t))

∫ +∞
0 u (t, s, x(s)) ds,

f3 (t, (T3x) (t))
∫ +∞
0 k(t, s)f4(s, x(s))ds

)

−f5
(
t, f2 (t, (T2y0) (t))

∫ +∞
0 u (t, s, y0(s)) ds,

f3 (t, (T3x) (t))
∫ +∞
0 k(t, s)f4(s, x(s))ds

)
∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣
f5

(
t, f2 (t, (T2y0) (t))

∫ +∞
0 u (t, s, y0(s)) ds,

f3 (t, (T3x) (t))
∫ +∞
0 k(t, s)f4(s, x(s))ds

)

−f5
(

t, f2 (t, (T2y0) (t))
∫ +∞
0 u (t, s, y0(s)) ds,

f3 (t, (T3y0) (t))
∫ +∞
0 k(t, s)f4(s, x(s))ds

)
∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣
f5

(
t, f2 (t, (T2y0) (t))

∫ +∞
0 u (t, s, y0(s)) ds,

f3 (t, (T3y0) (t))
∫ +∞
0 k(t, s)f4(s, x(s))ds

)

−f5
(

t, f2 (t, (T2y0) (t))
∫ +∞
0 u (t, s, y0(s)) ds,

f3 (t, (T3y0) (t))
∫ +∞
0 k(t, s)f4(s, y0(s))ds

)
∣∣∣∣∣∣∣∣∣∣
.

We get

|(Fx) (t)− (Fy0) (t)| ≤ L |(T1x) (t)− (T1y0) (t)|
+ L |f2 (t, (T2x) (t))− f2 (t, (T2y0) (t))|

×
∫ +∞

0
|u (t, s, x(s))| ds

+ L |f2 (t, (T2y0) (t))|

×
∫ +∞

0
|u (t, s, x(s))− u (t, s, y0(s))| ds

+ L |f3 (t, (T3x) (t))−, f3 (t, (T3y0) (t))|

×
∫ +∞

0
|k(t, s)f4(s, x(s))| ds

+ L |f3 (t, (T3y0) (t))|

×
∫ +∞

0
|k(t, s)| |f4(s, x(s))− f4(s, y0(s))| ds.
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This implies that

|(Fx) (t)− (Fy0) (t)| ≤ L |(T1x) (t)− (T1y0) (t)|
+L2 |(T2x) (t)− (T2y0) (t)|

×
∫ +∞

0
|u (t, s, x(s))| ds

+L
{
L |(T2x) (t)|+ f2

}
×
∫ +∞

0
|u (t, s, x(s))− u (t, s, y0(s))| ds

+L2 |(T3x) (t)− (T3y0) (t)|

×
∫ +∞

0
k(t, s) |f4(s, x(s))| ds

+L
{
L |(T3x) (t)|+ f3

}
×
∫ +∞

0
|k(t, s)| |f4(s, x(s))− f4(s, y0(s))| ds.

So, we use assumptions (8) and (9) we obtain

|(Fx) (t)− (Fy0) (t)| ≤ L |(T1x) (t)− (T1y0) (t)|
+L2 |(T2x) (t)− (T2y0) (t)|

×
∫ +∞

0
a(t)b(s)h (|x(s)|) ds

+L
{
L |(T2x) (t)|+ f2

}
×
∫ +∞

0
ηr0 (|x− y0|) v(s)ds

+L2 |(T3x) (t)− (T3y0) (t)|

×
∫ +∞

0
p(t)q(s)ρ(s)d4 (|x(s)|) ds

+L
{
L |(T3x) (t)|+ f3

}
×
∫ +∞

0
p(t)q(s)ωr0

(ε) ds. (3.19)

Hence we have

‖Fx− Fy0‖ ≤ L ‖T1x− T1y0‖+ L2 ‖T2x− T2y0‖ ‖a‖ ‖b‖1 h(r0)

+L
{
Ld2 (r0) + f2

}
ηr0 (‖x− y0‖) ‖v‖1

+L2d4 (r0) ‖T3x− T3y0‖PQ
+L

{
Ld3 (r0) + f3

}
P ‖q‖1 ωr0

(ε) , (3.20)
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where

ωr0
(ε) = sup {|f4(s, x)− f4(s, y0)| : s ≥ 0, x, y ∈ [−r0, r0] , |x− y0| ≤ ε} .

Observe that in view of assumption (8) we infer that ωr0
(ε)→ 0 as ε→ 0.

Since the operators Ti are continuous for any y0 ∈ Br0 , there exist the number
δi(ε) > 0 with δi(ε) ≤ ε such that we have

‖Tix− Tiy0‖ ≤ ε

for all x satisfying ‖x− y0‖ < δi. Let us take δ(ε) = min {δi(ε), i = 1, 2, 3}. In
this case if ‖x− y0‖ < δ(ε), (3.20) becomes

‖Fx− Fy0‖ ≤ Lε+ L2ε ‖a‖ ‖b‖1 h(r0)

+ L
{
Ld2 (r0) + f2

}
ηr0 (ε) ‖v‖1

+ L2εd4 (r0)PQ+ L
{
Ld3 (r0) + f3

}
P ‖q‖1 ωr0

(ε) . (3.21)

Therefore from (3.21) and assumption (4), we have that F is continuous on
the ball Br0 .

Further, we shall show that operator F satisfies the Darbo condition on the
ball Br0 . In order to do this, let us take a nonempty subset X of the ball Br0 .
Fix ε ≥ 0, T > 0 and choose x ∈ X and t1, t2 ∈ [0, T ] such that |t1 − t2| ≤ ε.
Then in view of (3.14) we have

ωT (FX, ε) ≤ LωT (T1x, ε) + 2
(
L2d3 (r0) + Lf3

)
d4(r0)PTQ

+ L2ωT (T3x, ε)PQd4(r0)

+
(
L2d2(r0) + Lf2

)
ϕr0 (ε) ‖τ‖1

+ L2ωT (T2x, ε)h(r0) ‖a‖ ‖b‖1 + ωTA2,A3
(f5, ε).

which yields by going to the limit as T → +∞

ω0(FX) ≤ Lω0(T1X) + L2ω0(T3X)PQd4(r0) (3.22)

+L2ω0(T2X)h(r0) ‖a‖ ‖b‖1 .

Further, let us take a nonempty subset X of the ball Br0 . For x, y ∈ X and
t ∈ R+, from estimate (3.19) we get that

diam(FX)(t) ≤
{
Ldiam (T1 (X) (t)) + L2 ‖a‖ ‖b‖1 h(r0)diam (T2 (X) (t))

}
+ L2PQd4(r0)diam (T3 (X) (t)) .
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If we take the limit supremum as t → +∞ in the above inequality, we have
the inequality

lim sup
t→+∞

diam(FX)(t) ≤ Llim sup
t→+∞

diam (T1 (X) (t)) (3.23)

+ L2 ‖a‖ ‖b‖1 h(r0)lim sup
t→+∞

diamT2 (X) (t)

+ L2PQd4(r0)lim sup
t→+∞

diam (T3 (X) (t))

By linking (3.22) and (3.23) and by assumption (11) we derive that

µ (FX) ≤ max
{
α1L,L

2h(r0) ‖a‖ ‖b‖1 α2, PQd4(r0)α3

}
µ (X) . (3.24)

Now, let us observe that assumption (12) and (3.24) we have that F is
a contraction with respect to the measure of noncompactness µ. Hence by
Theorem 2.4, the operator F has a fixed point x in the ball Br0 .

Obviously, every function x = x(t) being a fixed point of the operator F is
a solution to (1.1). Further, keeping in mind Remark 2.5, we conclude that
the set Fix(F ) of all fixed points of the operator F belonging to the ball Br0 is
a member of the kerµ. Hence, in view of the description of the kerµ we infer
that all of solutions all x(t), y(t) of (1.1) we have that µ (X) = 0, X = {x, y} ⊂
BC (R+,R) belonging to the ball Br0 are uniformly attractive on R+. Indeed,
we have in particular lim sup

t→∞
diam X(t) = 0, that is, for all ε > 0 there

exists T > 0 such that for all t > T diam |x(t)− y(t)| ≤ ε. Consequently, the
solutions of (1.1) are asymptotically stable. This step completes the proof of
our theorem. �

Now, we present some examples of classical integral and functional equations
considered in nonlinear analysis which are particular cases of Eq.(1.1) and
consequently, the existence of their solutions can be established using Theorem
2.4.

(1) By setting f1 = 0, f3 = 1, f5 (t, x, y) = y, Eq.(1.1) reduces to the
nonlinear integral equation (1.2).

(2) By setting f1 = 0, f3(t, a) = µ, f5 (t, x, y)) = h(t)+y, Eq.(1.1) reduces
to the nonlinear integral equation (1.3) and if µ = 1 we obtain (1.5).

(3) By setting f1 = 0, f5 (t, x, y) = y, T3(x)(t) = x(t) and f4 (s, x(s)) =
f(x(s)) + g(x(s)) Eq.(1.1) reduces to the nonlinear integral equation
(1.4) .

(4) By setting f1 = 0, f3 = 0, f2 (t, b) = b, f5 (t, x, y) = a(t)+x, T2(x)(t) =
x(t) Eq.(1.1) reduces to the nonlinear integral equation (1.6) .

(5) By setting f1 = 0, f3 (t, b) = f(t, b), f5 (t, x, y) = g(t)+y and T3(x)(t) =
x(t) Eq.(1.1) reduces to the nonlinear integral equation (1.7) .
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(6) By setting f1 = 0, f2 (t, b) = f(t, b), f5 (t, x, y) = a(t)+y and T2(x)(t) =
x(t) Eq.(1.1) reduces to the nonlinear integral equation (1.8) .

(7) By setting f1(t, a) = a, f2(t, b) = b, f5 (t, x, y) = y, Eq.(1.1) reduces to
the nonlinear integral equation (1.9) . Note Chandrasekhar’s integral
equation, appears in the theory of radiative transfer, in the theory of
neutron transport and in theory of traffic, is a special case of Eq.(1.1) .

4. Example

Consider the following functional integral equation:

x(t) =
1

10

 e−t

1+t2
+ t sinx(t)

3t+9 +
(
arctan t
2+t2

+ t2x2(t)
3t2+2

) ∫ +∞
0

arctanx(s)
et(s2+1)

ds

+
(

t
25+t2

x(t) + t
16+t2

) ∫ +∞
0

te−(t+s)

1+t2

√
|x(s)|

 (4.1)

where t ∈ R+.

Let (T1x) (t) = t sinx(t)
10(3t+9) , (T2x) (t) = t2x2(t)

10(3t2+2)
, (T3x) (t) = t

10(25+t2)
x(t),

f1 (t, x) = e−t

10(1+t2)
+x, f2 (t, x) = arctan t

10(2+t2)
+x, f3 (t, x) = 1

10

(
t

16+t2
+ t

25+t2
x
)
,

u (t, s, x(s)) = arctanx(s)
et(s2+1)

, k(t, s) = te−s

1+t2
, f4 (t, x) = e−t

√
|x|, f5 (t, y, z) =

f2 (t, x) y + f3 (t, x) z, a(t) = π
2et , b(s) = 1

1+s2
. Then the assumptions of

Theorem 2.4 are satisfied. Indeed, f1 : R+ × R → R, is continuous, further

|f1 (t, x)− f1 (t, y)| ≤ e−t

10(1+t2)
|x− y| for all t ∈ R+ and x, y ∈ R. We put

l1(t) = e−t

10(1+t2)
, L1 = 0, 1. l3(t) = t

10(25+t2)
, L3 = 1

100 , q(s) = e−s, p(t) =
t

1+t2
, ρ(t) = t, d4(r) =

√
r and ρ(t) = e−t. Then this yields that P = Q = 1

2

and L = 1
10 , f5 : R+ × R+ × R→ R is continuous and satisfies:

|f5 (t, a, x)− f5 (t, a, y)| ≤ 1
100 |x− y| ,

|f5 (t, a, x)− f5 (t, b, x)| ≤ π
40 |a− b| .

Also, we have |f1 (t, 0)| ≤ f1 = 1
10 and |f2 (t, 0)| ≤ f2 = π

40 , |f3 (t, 0)| ≤ f3 = 1
80

and f5 (t, 0, 0) = 0. It is easily verified that the assumptions of Theorem 2.4 are
satisfied, first (5) and (6) are satisfied, T1, T2 and T3 are continuous operators
on the space BC (R+,R). Further for all t ∈ R+ and x ∈ BC (R+,R) , we
have

|(T1x) (t)| ≤ 1

30
, |(T2x) (t)| ≤ x2(t)

30
, |(T3x) (t)| ≤ 1

100
|x(t)| . (4.2)

Hence assumption (1) is satisfied with d1(x) = 1
30 , d2(x) = x2(t)

30 and d3(x) =
1

100x. Further note that the function u is continuous on the set R+ ×R+ ×R.
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Moreover, we get

|u (t, s, x)| =
∣∣∣∣arctanx(s)

et (s2 + 1)

∣∣∣∣ ≤ π

2et (s2 + 1)
(4.3)

for all t, s ∈ R+ and x ∈ R. Thus, according to assumption (2) we may put
a(t) = π

2et , b(s) = 1
(s2+1)

and h(x) = 1. Further we get

‖a‖ = sup
{ π

2et
, t ≥ 0

}
=
π

2
, ‖b‖1 =

∫ +∞

0

1

(s2 + 1)
ds =

π

2

and obviously, we have that a(t) → 0 as t → +∞. Additionally, without loss
of generality that for all t1, t2 and s ∈ R+ and x ∈ R with |x| ≤ r0 we have

|u (t1, s, x)− u (t1, s, x)| =
∣∣∣∣ arctanx

et1 (s2 + 1)
− arctanx

et2 (s2 + 1)

∣∣∣∣
=

∣∣∣∣arctanx

s2 + 1

∣∣∣∣
∣∣et2 − et1∣∣
et1+t2

≤
∣∣∣∣arctanx

s2 + 1

∣∣∣∣ eξ |t2 − t1|et1+t2

≤ π

2 (s2 + 1)
|t2 − t1| ,

where ξ ∈ (t1, t2). If we put ϕr0(t) = t and τ(s) = π
2(s2+1)

, the assumption

(3) is satisfied. Without loss of generality assume that x < y, for all t ∈ R+

and x, y ∈ R with |x| ≤ r0, |y| ≤ r0, we get

|u (t, s, x)− u (t, s, y)| =
∣∣∣∣arctanx− arctan y

et (s2 + 1)

∣∣∣∣
≤ |x− y|
et (ξ2 + 1) (s2 + 1)

≤ |x− y|
s2 + 1

,

where ξ ∈ (x, y). If we choose ηr0(t) = t and v(s) = 1
s2+1

, the assumption (4)
is satisfied.

Now notice that the inequality in assumption (9) has the form:

1

10

(
4

3
+
π3

16
+

(
1

10
r0 +

1

8

) √
r0
4

+
π2r20
12

)
− r0 ≤ 0. (4.4)

It can be easily verified if we define continuous function ϕ : [0, 1] → R such

that ϕ(r) = 1
10

(
4
3 + π3

16 +
(

1
10r + 1

8

) √r
4 + π2r2

12

)
−r, then ϕ (0) > 0 and ϕ (1) =

0.41 − 1 < 0. The continuity of ϕ guarantees that there exists a number
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r0 ∈ (0, 1) such that ϕ (r0) = 0. Also for ε ≥ 0, T > 0, ‖x‖ ≤ r0 and t, s ∈ [0, T ]
such that |t− s| ≤ ε, we have

|(T1x) (t)− (T1x) (s)| = 1

10

∣∣∣∣ t sinx(t)

3t+ 9
− s sinx(s)

3s+ 9

∣∣∣∣
≤ t(s+ 3) |sinx(t)− sinx(s)|+ 3 |sinx(s)| |t− s|

30 (t+ 3) (s+ 3)

≤ t

30 (t+ 3)
|x(t)− x(s)|+ ε |sinx(ε)|

10 (t+ 3) (s+ 3)

≤ 1

30
|x(t)− x(s)|+ ε

90
. (4.5)

Further, it can be seen that

|(T2x) (t)− (T2x) (s)| = 1

10

∣∣∣∣ t2x2(t)3t2 + 2
− s2x2(s)

3s2 + 2

∣∣∣∣
≤

2r0t
2
(
3s2 + 2

)
|x(t)− x(s)|+ 2r20 (t+ s) (t− s)

10 (3t2 + 2) (3s2 + 2)

≤ r0t
2

5 (3t2 + 2)
|x(t)− x(s)|+ r20 (t+ s) ε

5 (3t2 + 2) (3s2 + 2)

≤ r0
15
|x(t)− x(s)|+ r20εT

10
(4.6)

and

|(T3x) (t)− (T3x) (s)| = 1

10

∣∣∣∣ tx(t)

t2 + 25
− sx(s)

s2 + 25

∣∣∣∣
≤
t
(
s2 + 25

)
|x(t)− x(s)|+ 25r0 (t− s)

10 (t2 + 25) (s2 + 25)

≤ 1

100
|x(t)− x(s)|+ 25r0ε

10 (t2 + 25) (s2 + 25)

≤ 1

100
|x(t)− x(s)|+ r0ε

10
. (4.7)

From (4.5), (4.6)and (4.7) and in view of (2.1), we get

ω0 (T1X) ≤ 1

3
ω0 (X) ,

ω0 (T2X) ≤ r0
15
ω0 (X) ,

ω0 (T3X) ≤ 1

15
ω0 (X) . (4.8)
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Now for x, y ∈ X, we get

|(T1x) (t)− (T1y) (t)| = 1

10

∣∣∣∣ t sinx(t)

3t+ 9
− t sin y(t)

3t+ 9

∣∣∣∣
≤ t |sinx(t)− sin y(t)|

10 (3t+ 9)

≤ t

10 (3t+ 9)
|x(t)− y(t)|

≤ 1

30
|x(t)− y(t)| . (4.9)

Using (4.9), we have

lim sup
t→+∞

diam (T1 (X) (t)) ≤ 1

30
lim sup
t→+∞

diamX(t). (4.10)

From (4.8) and (4.10), we get

µ (T1X) ≤ 1

30
µ (X) . (4.11)

For x, y ∈ X, we get

|(T2x) (t)− (T2y) (t)| = 1

10

∣∣∣∣ t2x2(t)3t2 + 2
− t2y2(t)

3s2 + 2

∣∣∣∣
≤ 2r0t

2 |x(t)− y(t)|
10 (3t2 + 2)

≤ r0t
2

5 (3t2 + 2)
|x(t)− y(t)|

≤ r0
15
|x(t)− y(t)| . (4.12)

From (4.8) and (4.12), we have

µ (T2X) ≤ r0
15
µ (X) (4.13)

and

|(T3x) (t)− (T3y) (t)| = 1

10

∣∣∣∣ t

t2 + 25
x(t)− t

s2 + 25
y(t)

∣∣∣∣
≤ t |x(t)− y(t)|

10 (t2 + 25)

≤ t

10 (t2 + 25)
|x(t)− y(t)|

≤ 1

100
|x(t)− y(t)| . (4.14)
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From (4.8) and (4.14), we obtain

µ (T3X) ≤ 1

100
µ (X) . (4.15)

Since 0 < r0 < 1, we have

K = max

(
1

30
,
√
r0

1

400
,
r0π

2

60

)
< 1.

Hence, from (4.11), (4.13), (4.15) and (3.24) that

µ (FX) ≤ Kµ (X) . (4.16)

It follows from (4.16) that the assumptions (10) and (12) are satisfied.

Finally we conclude that the assumptions of Theorem 2.4 are satisfied. This
implies that the functional integral equations (4.1) has at least one solution
belonging to the ball Br0 of the space BC (R+,R). Taking into account Re-
mark 2.5 and the measure of noncompactness µ given in (2.2) , we infer easily
that any solutions of (4.1) which belong to the ball Br0 are asymptotically
stable on R+ as defined in Definition 2.3.

References

[1] R.P. Argarwal and D. O’Regan, Fredholm and Volterra integral equations with integrable
singularities, Hokkaido Math. J. 33 (2004), 443-456.

[2] J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes
in Pure and Applied Mathematics 60, Marcel Dekker, New York, 1980.

[3] J. Banas and L. Olszowy, On solutions of a quadratic Urysohn integral equation on an
unbounded interval, Dyna. Syst. Appl., 17(2) (2008), 255-269.

[4] J. Banas and D. O’Regan, On existence and local attractivity of solutions of a quadratic
Volterra integral equation of fractional order, J. Math. Anal. Appl., 345 (2008), 573-582.
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