• Title/Summary/Keyword: limiting behavior

Search Result 189, Processing Time 0.021 seconds

A Study on the Manufacture of the Cu Powder from Electrochemical Recovery of Waste Rinse Water at the Cu Electroplating Process (동 도금 수세 폐수로부터 구리 분말 제조에 관한 연구)

  • 김영석;한성호
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.194-199
    • /
    • 2003
  • Polarization measurements were peformed to investigate the electrochemical behavior of copper ions and limiting current density in waste rinse water from copper electroplating processes. A newly designed cyclone type electrolyzer was tested to recover the copper powder. Synthetic solutions were prepared using analytical grade $CuSO_4$ to the desired waste water concentration and pH was adjusted with $H_2$$SO_4$. Electrowinning was peformed at room temperature and the solution was cycled with a pump. Results showed that more than 99 percent of Cu was recovered and the size of the recovered Cu powder ranges from 0.1 - $0.5\mu\textrm{m}$. The chemical composition of the Cu powder mainly consists of $Cu_2$O and Cu and can be easily reduced to pure Cu powder.

Testion a Multivariate Process for Multiple Unit Roots (다변량 시계열 자료의 다중단위근 검정법)

  • Key Il Shin
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.1
    • /
    • pp.103-112
    • /
    • 1994
  • An asymptotic property of the estimated eigenvalues for multivariate AR(p) process which consists of vector of nonstationary process and vector of stationary process is developed. All components of the nonstationary process are assumed to reveal random walk behavior. The asymptotic property is helpful in understanding multiple unit roots. In this paper we show the stationay part in multivariate AR(p) process does not affect the limiting distribution of estimated eigenvalues associated with the nonstationary process. A test statistic based on the ordinary least squares estimator for testing a certain number of multiple unit roots is suggested.

  • PDF

Buckling behaviour of plates partially restrained against rotation under stress gradient

  • Bedair, Osama K.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.4
    • /
    • pp.383-396
    • /
    • 1996
  • In this paper, the behavior of plates partially restrained against rotation under stress gradient is investigated. As a first stage, an energy formulation is presented to model this boundary condition and a general expression is derived for the prediction of the elastic buckling of the plate under this general loading condition. The accuracy of the derived expression is compared numerically using the Galerkin method with other available data for the two limiting conditions of rotationally free and clamped boundaries. Results show that the prediction is within a 5% difference. The influence of rotational restraint and stress gradient upon the buckling load and the associated buckling mode is investigated. Numerical results show sensitivity of the buckling mode to the degree of rotational restraint and the variation of the buckling load with the stress gradient.

Application of a near-wall turbulence model to the flows over a step with inclined wall (경사진 계단유동의 해석을 위한 벽면근접 난류모형의 적용)

  • An, Jong-U;Park, Tae-Seon;Seong, Hyeon-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.735-746
    • /
    • 1997
  • A nonlinear low-Reynolds-number k-.epsilon. model of Park and Sung was extended to predict the flows over a step with inclined wall, where a boundary layer flow without separation and a separated and reattaching flow coexist. For a better prediction of the flows, a slight modification was made on the function of the wall damping( $f_{\mu}$) and the model constant ( $C_{{\epsilon}1}$) in the .epsilon.-equation. The model performance was validated by comparing the model predictions with the experiment. It was shown that the flows over a step with inclined wall are simulated successfully with the present model.ent model.

A Low-Reynolds-Number 4-Equation Model for Turbulent Separated and Reattaching Flows (난류박리 및 재부착 유동의 해석을 위한 저레이놀즈수 4-방정식 난류모형의 개발)

  • 이광훈;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.2039-2050
    • /
    • 1995
  • The nonlinear low-Reynolds-number k..epsilon. model of park and Sung is extended to predict the turbulent heat transports in separated and reattaching flows. The equations of the temperature variance( $k_{\theta}$ and its dissipation rate(.epsilon.$_{\theta}$ are solved, in concert with the equations of the turbulent kinetic energy(k) and its dissiation rate(.epsilon). In the present model, the near-wall effect and the non-equilibrium effect are fully taken into consideration. The validation of the model is then applied to the turbulent flow behind a backward-facing step and the flow over a blunt body. The predicted results of the present model are compared and evaluated with the relevant experiments.

Analysis of Two Bottleneck ECN/RED Gateways in Many User TCP Networks (두 개의 병목지점 ECN/RED 게이트웨이의 분석)

  • 이계민;강영경;전종우
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.2
    • /
    • pp.311-326
    • /
    • 2004
  • We propose a Markov model of two bottleneck ECN/RED gateways experiencing a large number of TCP users. We show that, as the number of users becomes large, the queue sizes per user of the both gateways converge at steady-state to individual fixed points. Also, we derive a computational algorithm to exactly obtain the fixed points and present simulation example showing the limiting behavior of the gateway traffic.

An analytical model considering temperature effects in self-signal processing infrared detectors (자기신호처리 적외선 감지소자의 온도효과를 고려한 해석적 모델)

  • 조병섭;곽계달
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.124-133
    • /
    • 1995
  • A theoretical self-consistent thermoelectric model has been developed for optimal thermal design in the self-signal processing infraed detectors. The model is achived by employing the coupled thermoelectric equation which allows which allows the simultaneous investigation of the termal and electrical aspects of device behavior. The thermal limitation of detectivity and responsivity are determined by the enegy gap, carrier concentration, lifetime, and mobility as a function of the temperature. The calculated results indicate that the detectivity is decreased at bias fields above about 50 V/cm, because the performence is limiting by temperature when the bias voltage reached the level associated with Joule heating. It has been also found that the improvement in the mid-band modulation transfer function(MTF) may be restricted by increasing the bias fields. Further, the important paramerers in the thermal optimization of SPIR detector, such as temperature in the device, ambipolar velocity, element thickness and length, are also considered. The analytical study provides a mathematical basis for optimal design of such a photoconductive IR detector and the agreement between the experimental and theoretical results are seen to be good.

  • PDF

Performance inspection of smart superconducting fault current controller in radial distribution substation through PSCAD/EMTDC simulation

  • MassoudiFarid, Mehrdad;Shim, Jae Woong;Lee, Jiho;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.21-25
    • /
    • 2013
  • In power grid, in order to level out the generation with demand, up-gradation of the system is occasionally required. This will lead to more fault current levels. However, upgrading all the protection instruments of the system is both costly and extravagant. This issue could be dominated by using Smart Fault Current Controller (SFCC). While the impact of Fault current Limiters (FCL) in various locations has been studied in different situations for years, the performance of SFCC has not been investigated extensively. In this research, SFCC which has adopted the characteristics of a full bridge thyristor rectifier with a superconducting coil is applied to three main locations such as load feeder, Bus-tie position and main feeder location and its behavior is investigated through simulation in presence and absence of small Distributed Generation unit (DG). The results show a huge difference in limiting the fault current when using SFCC.

A Tuning Algorithm for LQ-PID Controllers using the Combined Time - and Frequency-Domain Control Method

  • Kim, Chang-Hyun;Lee, Ju;Lee, Hyung-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1244-1254
    • /
    • 2015
  • This paper proposes a new method for tuning a linear quadratic - proportional integral derivative controller for second order systems to simultaneously meet the time and frequency domain design specifications. The suitable loop-shape of the controlled system and the desired step response are considered as specifications in the time and frequency domains, respectively. The weighting factors, Q and R of the LQ controller are determined by the algebraic Riccati equation with respect to the limiting behavior and target function matching. Numerical examples show the effectiveness of the proposed LQ-PID tuning method

An extension of the hong-park version of the chow-robbins theorem on sums of nonintegrable random variables

  • Adler, Andre;Rosalsky, Andrew
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.363-370
    • /
    • 1995
  • A famous result of Chow and Robbins [8] asserts that if ${X_n, n \geq 1}$ are independent and identically distributed (i.i.d.) random variables with $E$\mid$X_1$\mid$ = \infty$, then for each sequence of constants ${M_n, n \geq 1}$ either $$ (1) lim inf_{n\to\infty} $\mid$\frac{M_n}{\sum_{j=1}^{n}X_j}$\mid$ = 0 almost certainly (a.c.) $$ or $$ (2) lim sup_{n\to\infty}$\mid$\frac{M_n}{\sum_{j=1}^{n}X_j}$\mid$ = \infty a.c. $$ and thus $P{lim_{n\to\infty} \sum_{j=1}^{n}X_j/M_n = 1} = 0$. Note that both (1) and (2) may indeed prevail.

  • PDF