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Testing a Multivariate Process
for Multiple Unit Roots

Key II ShinD
Abstract

An asymptotic property of the estimated eigenvalues for multivariate AR(p)
process which consists of vector of nonstationary process and vector of stationary
process is developed. All components of the nonstationary process are assumed to
reveal random walk behavior. The asymptotic property is helpful in understanding
multiple unit roots. In this paper we show the stationary part in multivariate
AR(p) process does not affect the limiting distribution of estimated eigenvalues
associated with the nonstationary process. A test statistic based on the ordinary
least squares estimator for testing a certain number of multiple unit roots is
suggested.

1. Introduction

Recently many researchers are interested in multivariate time series. Useful models have
been developed for observed data. Among them autoregressive models, which express the
current vector as a linear function of its predecessors, are fundamental and simple. Usually
one uses ordinary least squares estimation or maximum likelihood estimation to estimate
coefficient matrices in autoregressive models.

Often data, especially in economics, appear to be nonstationary (unit root case), which
means the roots of characteristic polynomial are one in magnitude. Johansen(1988, 1991)
derived the conditional maximum likelihood estimators of the cointegration vectors for an
multivariate AR(p) model with independent Gaussian errors and initial values fixed. He
derived a likelihood ratio test for the hypothesis that there are a given number of unit
roots. Fountis and Dickey (1989) investigated the miltivariate AR(p) model with one unit
root and others less than one in magnitude. They assumed that the initial values are fixed
and used the ordinary least squares estimators that arise from the conditional likelihood.
Shin (1992) investigated the multivariate AR(p) model with one unit root and others less
than one in magnitude. He assumed that the initial values follow normal distribution with
mean 0 and variance V which satisfies Yule-Walker equations. He used the unconditional
maximum likelihood estimators to estimate the coefficient matrices in the multivariate AR(p)
model. Using Monte-Carlo study he showed that the unconditional maximum likelihood

estimators have better power properties than the ordinary least squares estimators when
mean is estimated.
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In this paper we study multivariate processes with multiple unit roots and the rest less
than one in magnitude. Fountis and Dickey (1989) showed that in the limit the
nonstationary part and the stationary part of the estimated matrix can be separated, which
means the existence of the stationary processes dose not affect the limiting distribution of
the estimated eigenvalues for the nonstationary process. We show that the limiting property
also carries to the multiple unit roots case. Finally we develop a test statistic for the
multiple unit roots based on the ordinary least squares estimators.

2. Multivariate autoregressive model

2.1 Preliminary statements

Consider the multivariate first-order autoregressive AR(1) process defined by the rule

Ye= VY +68,t=12 .. 2.1.1)
where Ye = [ Yo, You, ooy Y Y, e = [ Eit, Eat, ..., Ext Y, Y o=¢ and
{e,:t =12, ... }is a sequence of independent and identically distributed multivariate

normal variates with mean ¢ (a vector of 0's) and variance matrix 2v.

Assume that there exists a real matrix R such that

A = R'VR = [ Iq;' “;;52] (212)

where Iy is an r-dimensional identity matrix and A% is a diagonal matrix with elements

less than 1 in magnitude. When the V matrix satisfies (2.1.2) we usually say that V has
multiple unit roots and the rest less than 1 in magnitude.

Fountis and Dickey (1989) showed that the nonstationary part and the stationary part can
be separated in the limit for AR(p) model with one unit root and the rest less than 1 in
magnitude. That is, the limiting distribution of the unit root in the multivariate AR(p)
process is the same as that of the univariate process which was studied by Dickey and
Fuller (1979). Shin (1992) showed that this separation also occurs when one uses the
unconditional maximum likelihood estimators for AR(p) model.

2.2 Separation of the nonstationary part and the stationary part for multiple unit roots
case

In this section we show an asymptotic property of the least squares estimator that we
will refer to as separation of the nonstationary part from the stationary part of the
coefficient matrix in the AR(1) model.
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Consider the k-dimensional multivariate AR(1) model with Xo=0,
Xe = A X1 + e, t = l, 2, ... (221)

where e¢’'s are i.id N(0O, Z).
Partitioning (2.2.1) we have

X1 Xit-1

[ d

[ An Ap
=1

eyt
+
H
€2

where X1t and X2t correspond to the nonstationary process and the stationary process

Xa Az Agp Xat-1

respectively. Assume that data are generated by

[ch ‘In’ o’ ] [ch—x
Xa ¢ Az Xa-1

where A2 is a diagonal matrix, X10=0 , X20=0 and e:'s are iid. N(0, 3). Here 0 is a

et
+ ,t=21 (22.2)
€2t

proper 0 matrix and Irr is an r-dimensional identity matrix. Note that (2.1.1) is transformed
to (2.2.1) by R, Since we use the eigenvalues of the ordinary least squares estimators as

test statistics transforming by R! does not affect the test statistics. Hence these models
cover general multiple unit roots case which satisfies assumption (2.1.2).
The usual ordinary least squares estimator for the parameter matrix A is

~ Kolsll ’Aolle
Aols = ~ ~
Aok Adszz
= (2 X XeD( Y XerXin)™! (223)
-1
g; XXt !2 XuXa-1 :i; Xi1-1X1e-1 2; Xu-1X2-1
; XaX t; XaXz-1 g Xa-1X 11 g Xa-1X2-1

Hence
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-1
!2; enXit-1 2; enXa-1 ; Xi-1X1-1 g Xi-1X2t-1

n

z.{ ez Xit-1 g eaXz-1 g Xz-1X1-1 g Xa-1X2-1

(224)
where A is defined in (2.1.2).

Fountis and Dickey (1989) showed that when A has one unit root the properly
L

normalized statistics n( Aesn - 1) and n 2( Agse - Azx) converge weakly to & /T

and ® respectively. ( €, T' ) is the weak limit of (g exXi-1/n , g; X1-1X1e-1/n%)

and ¢ is the weak limit of the normalized coefficient matrix in the regression of
Xa - A% Xa2-1 on Xaz-1 . See Fountis and Dickey (1989) for precise definition of
(€, T ) and 9. This means the limiting distribution of the normalized largest
eigenvalue of the Kols corresponding to nonstationary process does not change even

though there exist stationary processes. Thus one says that the nonstationary part and the
stationary part can be separated for the multivariate AR(1) model with one unit root. We
can easily extend the orders of sums of squares and cross products developed by Fountis

and Dickey (1989) to the vector cases to separate the nonstationary part of the ,A\ols in
the multiple unit roots case. That is, let

W, = tﬁ; enXn-1, Wz = g exXi-1, W3 = g enXz-1,

n

Wi = 33 enXat, Ws = 23 Xa-1Xii and We = 2 Xz1Xa1’

then
+
Wy = Op(_li), Wz = Op(n), Wi = Op(n ), (225)
Ws= Op(n?) Ws=0,(n) and Ws = O ,(n)
Also by direct moment calculation we have
Wy = g; X1-1Xu-1 = O p(n?). (2.2.6)

1 1
Let Dn = diag(n, ..., n, n 2 ..,n %) Then



Testing a Multivariate Process for Multiple Unit Roots 107

[ Aas - Al Dy = [i} e:X¢-1] D;! [Dalg; XeaXetDR17P = 0,(1). @27
Since D;lg X-1X¢-1D5' produces a block diagonal matrix in the limit we have

n(Agsn - D = [,‘:{: enXi-1/n] [g X1 Xi-1/n%17 + o, (1), (2.2.8)

Let
n(Baw - D = [3] exXir/n] [37 XiaKier/n?] ™ (2.2.9)

Then ﬁolsll is the ordinary least squares estimator of the coefficient matrix in the

r-dimensional AR(1) model with all unit roots. From (2.2.8) and (2.2.9) one can say that the
stationary process {Xz} does not affect the limiting distribution of the estimated coefficient

matrix ﬁolsll associated with the nonsationary part for the model transformed by RL
Again even though the limiting distribution of ﬁolsll depends on the matrix R, the

limiting distributions of the estimated eigenvalues of §01511 do not change as is stated in
the following theorem.

Theorem Let X, = ( %, Xonyeer, Xmyevry Xin) be the ordered eigenvalues of A s
defined in (2.2.3) such that Xin> Rzm>...2 K.

Also let X" = ( %', %) and %.% = ( %,%,.., %% be the ordered
eigenvalues of /A\olsll and ﬁonsu defined in (22.7) and (228) respectively. Then for

i=1..,5n0(%g-1, nC Liu'-1) and n( xiua‘l) have the same limiting
distribution.
Proof Foral i1 <i<r,

P Ros= Xinll =1 Rosni- X inl+ Aasz ( Acwz- YD) ! Aganll Rasz- Xinll=0.
Since Kols — A in probability which is a diagonal matrix we have %y — 1.

However | Aoz ~ Xiull > [ Az" - 1l # 0 in probability. Hence for large n

| Rostt = Vol + Rasiz( Aoz - i) ! Raanl = 0.
~~ -~ -~ —-a-
Since Acs2( Aaszz = Xinl) ' Bam = O »(n ? ), using expansion of determinant of

sum of two matrices (see Searle pl12) we have
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~ =1
In(Basy - D -n(%u -1DI1=0,(n )

Using eigenvalue-eigenvector decomposition we have
det{diag(n( Lin-1)-n( %1a"-1), n( Xw-1-n( Xx'-1), ..., n( i-1)-n( Lx"-1))

=1

=0 y] (n 2 )
Hence at least one of diagonal elements must go to zero. Therefore for
i=1 ..,r n(%u-1 and n( Y4 -1) have the same limiting distribution. Also (2.2.8)

guarantees that n( % ®-1) and n( %4 -1) have the same limiting distirbution.
QE.D

2.3 Derivation of a test statistic

In section 2.2 we have shown that the limiting distribution of the estimated eigenvalues
associated with the nonstationary part of /Aols can be developed without regard to the

stationary part. With this in mind we derive a test statistic to test for muitiple unit roots
in a multivariate AR(1) model with all roots one.

Consider the k-dimensional multivariate AR(1) model with Xo=0

X: = B X¢-1 + Ey, t21 23.1)

where €¢'s are iid N(0, 2).
Assume data are generated by

Xie = Ik Xt-1 + & t21 (2.32)
where Ik is an k~dimensional identity matrix.
Consider transformation Z¢ = 9X:. Then Z: is a univariate AR(1) process with one unit
root, that is, for any k-dimensional vector ?, Z: satisfies
Zy = Zi-1 + Wy t21 (2.3.3)

where Nt = Q€¢ is a sequence of independent errors.

Note that the muitivariate AR(1) model with all unit roots is in fact the only multivariate
process for which every linear combination is a univariate AR(1) model with unit root.
Consider the general univariate AR(1) model

Ze = pZi-1 + My, t21 (234)

A test that the B matri){ has all roots one is equivalent to a test that p=1 in (2.3.4) for
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all © vectors. Now the ordinary least squares estimator of P is

Pos = t2;(Zt2c~x)/§;23—1

Qg(xtx;-lm' / Qg(xt_l Xi-)® for all @ .

If the B matrix has all roots one then for any 2, P must be one. Generally we are
interested in testing whether B has all roots one or B has some unit roots and the rest

less than one in magnitude. Therefore our strategy is to find an aols, if it rejects

Ho : p=1 then we can decide that the B matrix does not have all roots one.

We need to find mgl Pais . Now

T Ban = TSN X /23Xt Xint

Smallest eigenvalue of {(gX:X;-x + gXt-lX; ). [gXHX;-l] 12},

Let B = (g;xtxé-l + gx.-xxé)-tg;xt-lx;-d“/z. Phillips and Durlauf (1986)

showed that B converges to Ix in probability. This is similar to the ideas proposed by
Johansen (1988) and Stock and Watson (1988).

Now from section 22 when n is large with R™! known we can directly apply this

statistic to the general AR(1) model with multiple unit roots and the rest less than one in
magnitude.

2.4 Multivariate AR(p) model
In this section we investigate the k-dimensional AR(p) model

Yi = CiYe1 + ...+ CoYip + 8 (24.1)

where 8¢'s are iid N(O, Z) with 2 positive definite. Using state space representation we
can make k-dimensional AR(p) model pk-dimensional AR(1) model. That is let

Ci C2 .. GCp B¢

A R

6 o .1 o 0

Y:
Zt = :

Yt-p+1
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then (2.4.1) becomes Z: = C Z¢-; + Mt
We assume that the characteristic equation

nPI - ’;f_‘!x“'icjl =0 242)

has r multiple unit roots and the other pk - r roots less than 1 in magnitude.
Again we assume that there exists a real matrix S such that

In ¢
E = S°ICS = [ (2.4.3)

¢ Ez

where E22 is a diagonal matrix with elements less than 1 in magnitude.
Assumption (2.4.3) eliminates the possibility of multiple unit roots being any component

series of the vector process.
Using state space representation and transformation by S™! (24.1) become
Xt = E Xi1 + et 2.4.4)

where X. = S'Z., E = S7'CS and e = S
Then the ordinary least squares estimator of E is

E ols

H

[;:.;XtXé-l][gXt-lXé-l] -
[ Bast  Ease ]

E ols21 E ols22

where Eolsll and ﬁolszz correspond to the nonstationary part and the stationary part
respectively.

Then by arguments similar to those in section 2.2 we have

n( Baan - I = [g; eltXit-l/n][gi Xie-1Xie-1/n?1 7+ 0, (1)

where X1t is a nonstationary vector process and ex = X1t — Xit-1. Therefore with

known S'1 we can use results in section 2.3 to test for multiple unit roots for the
multivariate AR(p) model.
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