• Title/Summary/Keyword: light I-V

Search Result 442, Processing Time 0.03 seconds

Design and Implementation of an optical wavelength analyzer (광파장분석기 설계 및 구현)

  • Park, Sung-Hoon;Park, Jong-Won;Lee, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.571-574
    • /
    • 2012
  • optical wavelength analyzer design and implementation of this study is about. For experiments, the input light in the infrared, ultraviolet, visible as a light source was used. I-V Converting circuit configured as a photodiode. I-V Converting circuit voltage is measured. Measured voltage can be determined for a wavelength in size.

  • PDF

Fabrication of 5,000V, 4-Inch Light Triggered Thyristor using Boron Diffusion Process and its Characterization (Boron 확산공정을 이용한 5,000V, 4인치 광 사이리스터의 제작 및 특성 평가)

  • Park, Kun-Sik;Cho, Doohyung;Won, Jongil;Lee, Byungha;Bae, Youngseok;Koo, Insu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.411-418
    • /
    • 2019
  • Light-triggered thyristors (LTTs) are essential components in high-power applications, such as HVDC transmission and several pulsed-power applications. Generally, LTT fabrication includes a deep diffusion of aluminum as a p-type dopant to form a uniform p-base region, which needs careful concern for contamination and additional facilities in silicon semiconductor manufacturing factories. We fabricated 4-inch 5,000 V LTTs with boron implantation and diffusion process as a p-type dopant. The LTT contains a main cathode region, edge termination designed with a variation of lateral doping, breakover diode, integrated resistor, photosensitive area, and dV/dt protection region. The doping concentration of each region was adjusted with different doses of boron ion implantation. The fabricated LTTs showed good light triggering characteristics for a light pulse of 905 nm and a blocking voltage (VDRM) of 6,500 V. They drove an average on-state current (ITAVM) of 2,270 A, peak nonrepetitive surge current (ITSM) of 61 kA, critical rate of rise of on-state current (di/dt) of 1,010 A/㎲, and limiting load integral (I2T) of 17 MA2s without damage to the device.

Characterization of Light Effect on Photovoltaic Property of Poly-Si Solar Cell by Using Photoconductive Atomic Force Microscopy (Photoconductive Atomic Force Microscopy를 이용한 빛의 세기 및 파장의 변화에 따른 폴리실리콘 태양전지의 광전특성 분석)

  • Heo, Jinhee
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.680-684
    • /
    • 2018
  • We investigate the effect of light intensity and wavelength of a solar cell device using photoconductive atomic force microscopy(PC-AFM). A $POCl_3$ diffusion doping process is used to produce a p-n junction solar cell device based on a polySi wafer, and the electrical properties of prepared solar cells are measured using a solar cell simulator system. The measured open circuit voltage($V_{oc}$) is 0.59 V and the short circuit current($I_{sc}$) is 48.5 mA. Moreover, the values of the fill factors and efficiencies of the devices are 0.7 and approximately 13.6 %, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, is used for direct measurements of photoelectric characteristics in limited areas instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics are observed. Results obtained through PC-AFM are compared with the electric/optical characteristics data obtained through a solar simulator. The voltage($V_{PC-AFM}$) at which the current is 0 A in the I-V characteristic curves increases sharply up to $18W/m^2$, peaking and slowly falling as light intensity increases. Here, $V_{PC-AFM}$ at $18W/m^2$ is 0.29 V, which corresponds to 59 % of the average $V_{oc}$ value, as measured with the solar simulator. Furthermore, while the light wavelength increases from 300 nm to 1,100 nm, the external quantum efficiency(EQE) and results from PC-AFM show similar trends at the macro scale but reveal different results in several sections, indicating the need for detailed analysis and improvement in the future.

PHOTOMETRIC OBSERVATIONS OF THE CONTACT BINARY SYSTEM V523 CASSIOPEIAE (접촉쌍성 V523 Cas의 측광학적 관측과 분석)

  • Jeong Jang-Hae;Kim Chun-Hwey;Lee Yong-Sam
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.177-188
    • /
    • 2006
  • A total of 920 observations (230 in ${\Delta}B$, 230 in ${\Delta}V$, 230 in ${\Delta}R$, 230 in ${\Delta}I$) for V523 Cas were made on 5 nights from January 6 to 24 in 2003 using the 61cm telescope with 2K CCD camera of the Sobaeksan Optical Astronomy Observatory of KASI. From our observations 9 times of minimum light were newly determined. Combined analysis of our new BVRI light curves with the double-lined radial velocity curves of the Rucinski et al.'s (2003) were made with the 2004 Wilson-Devinney (WD) binary model to yield new physical parameters of the V523 system. Small asymmetries in light curves were explained with the adoption of a cool spot on the hot primary and a hot spot on the cool secondary.

UV LINE EMISSIONS OF 44i BOOTIS (44i BOO의 자외선 방출연구)

  • 한동주;김용기;한원용;이우백
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.335-340
    • /
    • 1998
  • We obtained UV light curves of 44i Bootis, a W UMa type star from the IUE low dispersion spectra. In order to investigate variations of the emission lines from chromospheric activity and transition region, UV line intensity has been measured for CI, CII, ClV, SiIV, HeII lines. Through plotting the line intensity with the orbital phase, we found that emission lines showed maximum at $0^p.2;and;0^p.8$ of the light curves, indicating the chromospheric activity of contact binary, 44i Bootis. We found that the light curves of UV emission lines is strongly modulated by the variation of chromospheric activities of 44i Bootis.

  • PDF

Light Emitting Diodes Based on Poly-o-toluedine (폴리톨루이딘을 이용한 발광소자 연구)

  • Park, Su Beom;Lee, Seong Ju;Kim, Yong Rok;Kim, Eun Ok
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.3
    • /
    • pp.229-232
    • /
    • 2002
  • Poly-o-toluidine (POT) was chemically and electrochemically synthesized for the study of electronic and steric effect of methyl substituents. The turn-on voltage of organic light emitting diode (OLED) was 9~14 V. ITO/POT/Al structured OLED were fabricated with various oxidation states of POT. PL, I-V characteristics and EL spectra were investigated.

The electrical effects of PV cell's short-circuit current difference for PV module application (태양전지의 단락전류 편차가 태양전지모듈에 미치는 전기적인 영향 분석)

  • Kim, Seung-Tae;Park, Chi-Hong;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young;Yu, Gwon-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.3-4
    • /
    • 2008
  • Photovoltaic module consists of serially connected solar cell which has low voltage characteristics. But, the other way, the whole current flow of PV module is restricted by lowest current of one solar cell. For the experiment, we make PV module composing the solar cells that have short circuit current difference of 0%, 1%, 3% and 5%. Using Light I-V and Dark I-V measurements, electrical characteristic parameters like Isc(short-circuit current), Voc(open-circuit voltage), Rs(series resistance), Rsh(shunt resistance) are analyzed. PV module of low current characteristics has electrical stress from other modules. And, such a module has a tendency of hot-spot suffering which leads degradation.

  • PDF

Model of Organic Light Emitting Device Emission Characteristics with Alternating Current Driving Method (교류 구동 방법에 의한 유기전계발광소자 발광 특성의 모델)

  • Seo, Jung Hyun;Ju, Sung Hoo
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.586-591
    • /
    • 2021
  • This paper proposes a mathematical model that can calculate the luminescence characteristics driven by alternating current (AC) power using the current-voltage-luminance (I-V-L) properties of organic light emitting devices (OLED) driven by direct current power. Fluorescent OLEDs are manufactured to verify the model, and I-V-L characteristics driven by DC and AC are measured. The current efficiency of DC driven OLED can be divided into three sections. Region 1 is a section where the recombination efficiency increases as the carrier reaches the emission layer in proportion to the increase of the DC voltage. Region 2 is a section in which the maximum luminous efficiency is stably maintained. Region 3 is a section where the luminous efficiency decreases due to excess carriers. Therefore, the fitting equation is derived by dividing the current density and luminance of the DC driven OLED into three regions, and the current density and luminance of the AC driven OLED are calculated from the fitting equation. As a result, the measured and calculated values of the AC driving I-V-L characteristics show deviations of 4.7% for current density, 2.9 % for luminance, and 1.9 % for luminous efficiency.

Performance of OLED Fabricated on the ITO Deposited by Facing Target Sputtering (대향식 스퍼터링법으로 증착된 ITO 양극 위에 제작된 OLED 성능)

  • Yoon, Chul;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.5
    • /
    • pp.199-204
    • /
    • 2008
  • Indium tin oxide (ITO) has been commonly used as an anode for organic light emitting diode (OLED), because of its relatively high work function, high transmittance, and low resistance. The ITO was mostly deposited by capacitive type DC or RF sputtering. In this study we introduced a new facing target sputtering method. On applying this new sputtering method, the effect of fundamental deposition parameters such as substrate heating and post etching were investigated in relation to the resultant I-V-L characteristics of OLED. Three kinds of ITOs deposited at room temperature, at $400^{\circ}C$ and at $400^{\circ}C$ with after surface modification by $O_2$ plasma etching were compared. The OLED on ITO deposited with substrate heating and followed by etching showed better I-V-L characteristics, which starts to emit light at 4 volts and has luminescence of $65\;cd/m^2$ at 9 volts. The better I-V-L characteristics were ascribed to the relevant surface roughness with uniform micro-extrusions and to the equi-axed micromorphology of ITO surface.

Characterization of Wavelength Effect on Photovoltaic Property of Poly-Si Solar Cell Using Photoconductive Atomic Force Microscopy (PC-AFM)

  • Heo, Jinhee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.160-163
    • /
    • 2013
  • We investigated the effect of light intensity and wavelength of a solar cell device by using photoconductive atomic force microscopy (PC-AFM). The $POCl_3$ diffusion doping process was used to produce a p-n junction solar cell device based on a Poly-Si wafer and the electrical properties of prepared solar cells were measured using a solar cell simulator system. The measured open circuit voltage ($V_{oc}$) is 0.59 V and the short circuit current ($I_{sc}$) is 48.5 mA. Also, the values of the fill factors and efficiencies of the devices are 0.7% and approximately 13.6%, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, was used for direct measurements of photoelectric characteristics in local instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics were observed. Results obtained through PC-AFM were compared with the electric/optical characteristics data obtained through a solar simulator. The voltage ($V_{PC-AFM}$) at which the current was 0 A in the I-V characteristic curves increased sharply up to 1.8 $mW/cm^2$, peaking and slowly falling as light intensity increased. Here, $V_{PC-AFM}$ at 1.8 $mW/cm^2$ was 0.29 V, which corresponds to 59% of the average $V_{oc}$ value, as measured with the solar simulator. Also, while light wavelength was increased from 300 nm to 1,100 nm, the external quantum efficiency (EQE) and results from PC-AFM showed similar trends at the macro scale, but returned different results in several sections, indicating the need for detailed analysis and improvement in the future.