Browse > Article
http://dx.doi.org/10.5695/JKISE.2008.41.5.199

Performance of OLED Fabricated on the ITO Deposited by Facing Target Sputtering  

Yoon, Chul (Dept. of Materials Engineering, Korea University of Technology and Education)
Kim, Sang-Ho (Dept. of Materials Engineering, Korea University of Technology and Education)
Publication Information
Journal of the Korean institute of surface engineering / v.41, no.5, 2008 , pp. 199-204 More about this Journal
Abstract
Indium tin oxide (ITO) has been commonly used as an anode for organic light emitting diode (OLED), because of its relatively high work function, high transmittance, and low resistance. The ITO was mostly deposited by capacitive type DC or RF sputtering. In this study we introduced a new facing target sputtering method. On applying this new sputtering method, the effect of fundamental deposition parameters such as substrate heating and post etching were investigated in relation to the resultant I-V-L characteristics of OLED. Three kinds of ITOs deposited at room temperature, at $400^{\circ}C$ and at $400^{\circ}C$ with after surface modification by $O_2$ plasma etching were compared. The OLED on ITO deposited with substrate heating and followed by etching showed better I-V-L characteristics, which starts to emit light at 4 volts and has luminescence of $65\;cd/m^2$ at 9 volts. The better I-V-L characteristics were ascribed to the relevant surface roughness with uniform micro-extrusions and to the equi-axed micromorphology of ITO surface.
Keywords
Organic light emitting diode (OLED); Facing target sputtering (FTS); Indium-tin-oxide (ITO); Surface roughness; Microstructure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. H. Sun, L. F. Cheng, M. W. Liu, L. S. Liao, N. B. Wong, C. S. Lee, S. T. Lee, Chem. Phys. Lett., 370 (2003) 425   DOI   ScienceOn
2 I. M. Chan, T. Y. Hsu, F. C. Hong, Appl. Phys. Lett., 81 (2002) 1899   DOI   ScienceOn
3 J. S. Lim, P. K. Shin, Appl. Surf. Sci., 253 (2007) 2828
4 M. A. Baldo, M. E. Thompson, S. P. Forrest, Nature 403 (2000) 750   DOI   ScienceOn
5 K. Noda, T. Hirata, T. Kawanabe, M. Naoed, Vacuum, 51 (1998) 687   DOI   ScienceOn
6 H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. V. Seggern, M. Stobel, J. Appl. Phys., 89 (2001) 420   DOI   ScienceOn
7 J. T. Kim, C. Yoon, S. H. Kim, H. T. Shin, EMRS 2008 Fall Meeting, (2008) 53
8 S. Nakamura, T. Aoki, T. Kittaka, R. Hakamata, H. Tabuchi, S. Kunitsugu, K. Takarable, Thin Solid Films, 515 (2007) 8205   DOI   ScienceOn
9 B. Choi, H. Yoon, H.H. Lee, Appl. Phys. Lett., 76 (2000) 412   DOI   ScienceOn
10 S. Uthanna, P. S. Reddy, B. S. Naidu, P. J. Reddy, Vacuum, 47 (1996) 91   DOI   ScienceOn
11 U. Mitschke, P. Bauerle, J. Mater. Chem., 10 (2000) 1471   DOI   ScienceOn
12 G. K. Li, J. J. Shen, W. B. Mi, Z. Q. Li, P. Wu, E. Y. Jiang, H. L. Ba, Appl. Surf. Sci., 253 (2006) 425   DOI   ScienceOn
13 T. J. Vink, W. Walrave, J. L. C Daams, P. C. Baarslag, J. E. A. M. van den Meerakker, Thin Solid Films, 266 (1995) 145   DOI   ScienceOn
14 A. J. Freeman, K. R. Poeppelemier, T. D. Mason, R. P. H. Chang, T. J. Marks, MRS Bull., 25 (2000) 45
15 S. M. Joeng, W. H. Koo, S. H. Choi, S. J. Jo, H. K. Baik, S. J Lee, K. M. Song, Thin Solid Films, 475 (2005) 227   DOI   ScienceOn
16 J. Schwarz, E. L. Bruner, N. Koch, A. R. Span, S. L. Bernasek, A. Kahn, Synth. Met., 138 (2003) 425
17 Hamberg, C. G. Granqvist, J. Appl. Phys., 60 (1986) 1   DOI   ScienceOn
18 B. S. Chiou, S. T. Hsieh, W. F. Wu, J. Am. Cera. Soc., 77 (1994) 1740   DOI   ScienceOn
19 C. T. Lee, B. T. Tang, H. Y. Lee, Thin Solid Films, 386 (2001) 105   DOI   ScienceOn
20 T. J. Marks, J. G. C. Veinot, J. Cui, H. Yan, A. Wang, N. L. Edleman, J. Ni, Q. Huang, P. Lee, N. R. Armstrong, Synth. Met., 127 (2002) 29   DOI   ScienceOn
21 Z. Z. You, J. Y. Dong, Microelectron. J., 38 (2007) 108   DOI   ScienceOn