DOI QR코드

DOI QR Code

Characterization of Light Effect on Photovoltaic Property of Poly-Si Solar Cell by Using Photoconductive Atomic Force Microscopy

Photoconductive Atomic Force Microscopy를 이용한 빛의 세기 및 파장의 변화에 따른 폴리실리콘 태양전지의 광전특성 분석

  • Heo, Jinhee (Advanced Characterization & Analysis Research Group, Korea Institute of Materials Science)
  • 허진희 (한국기계연구원 부설 재료연구소 재료분석평가실)
  • Received : 2018.10.18
  • Accepted : 2018.11.01
  • Published : 2018.11.27

Abstract

We investigate the effect of light intensity and wavelength of a solar cell device using photoconductive atomic force microscopy(PC-AFM). A $POCl_3$ diffusion doping process is used to produce a p-n junction solar cell device based on a polySi wafer, and the electrical properties of prepared solar cells are measured using a solar cell simulator system. The measured open circuit voltage($V_{oc}$) is 0.59 V and the short circuit current($I_{sc}$) is 48.5 mA. Moreover, the values of the fill factors and efficiencies of the devices are 0.7 and approximately 13.6 %, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, is used for direct measurements of photoelectric characteristics in limited areas instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics are observed. Results obtained through PC-AFM are compared with the electric/optical characteristics data obtained through a solar simulator. The voltage($V_{PC-AFM}$) at which the current is 0 A in the I-V characteristic curves increases sharply up to $18W/m^2$, peaking and slowly falling as light intensity increases. Here, $V_{PC-AFM}$ at $18W/m^2$ is 0.29 V, which corresponds to 59 % of the average $V_{oc}$ value, as measured with the solar simulator. Furthermore, while the light wavelength increases from 300 nm to 1,100 nm, the external quantum efficiency(EQE) and results from PC-AFM show similar trends at the macro scale but reveal different results in several sections, indicating the need for detailed analysis and improvement in the future.

Keywords

References

  1. S. Sadewasser and M. C. Lux-Steiner, J. Vac. Sci. Technol. B, 28, C4D29 (2010). https://doi.org/10.1116/1.3442275
  2. K. Maturova, M. Kemerink, M. M. Wienk, D. S. H. Charrier and R. A. J. Janssen, Adv. Funct. Mater., 19, 1379 (2009). https://doi.org/10.1002/adfm.200801283
  3. D. C. Coffey, O. G. Reid, D. B. Rodovsky, G. P. Bartholomew and D. S. Ginger, Nano Lett., 7, 738 (2007). https://doi.org/10.1021/nl062989e
  4. O. G. Reid, G. E. Rayermann, D. C. Coffey and D. S. Ginger, J. Phys. Chem. C, 114, 20672 (2010). https://doi.org/10.1021/jp1056607
  5. B. H. Hamadani, S. Jung, P. M. Haney, L. J. Richter and N. B. Zhitenev, Nano Lett., 10, 1611 (2010). https://doi.org/10.1021/nl9040516
  6. D. C. Coffey and D. S. Ginger, Nat. Mater., 5, 735 (2006). https://doi.org/10.1038/nmat1712
  7. C. Groves, O. G. Reid and D. S. Ginger, Acc. Chem. Res., 43, 612 (2010). https://doi.org/10.1021/ar900231q
  8. J. Heo and Y. Rhyim, J. Korean Phys. Soc., 60, 1322 (2012). https://doi.org/10.3938/jkps.60.1322
  9. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek and J. Bennett, Appl. Phys. Lett., 56, 2001 (1990). https://doi.org/10.1063/1.102999
  10. E. S. Snow, P. M. Campbell and P. J. McMarr, Appl. Phys. Lett., 63, 749 (1993). https://doi.org/10.1063/1.109924
  11. F. Perez-Murano, G. Adabal, N. Barniol, X. Aymerich, J. Servat, P. Gorostiza and F. Sanz, J. Appl. Phys., 78, 6797 (1995). https://doi.org/10.1063/1.360505
  12. R. Garcia, M. Calleja and F. Perez-Murano, Appl. Phys. Lett., 72, 2295 (1998). https://doi.org/10.1063/1.121340