• Title/Summary/Keyword: level oscillation

Search Result 208, Processing Time 0.037 seconds

Behavior of the Edge Flame on Flame Extinction in Buoyancy minimized Methane-Air Non-premixed Counter Triple Co-flow Flames (부력을 최소화한 대향류 삼축 메탄-공기 비예혼합 화염 소화에서 에지화염의 거동)

  • Park, Jin Wook;Park, Jeong;Yun, Jin-Han;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.81-84
    • /
    • 2014
  • A Experimental study on flame extinction behavior was investigated using He curtain flow with counter triple co-flow burner. Buoyancy force was suppressed up to a microgravity level of $10^{-2}-10^{-3}g$ by using He curtain flow. The stability maps were provided with a functional dependency of diluent mole fraction and global strain rate to clarify the differences in flame extinction behavior. The flame extinction curves had C-shapes at various global strain rates. The oscillation and extinction modes were different each other in terms of the global strain rate, and the flames extinction modes could be classified into five modes such as (I) and (II): an extinction through the shrinkage of the outmost edge flame forward the flame center after self-excitation and without self-excitation, respectively, (III): an extinction through rapid advancement of a flame hole while the outmost edge flame is stationary, (IV): self-excitation occurs in the outermost edge flame and the center edge flame and then a donut shaped flame is formed and/or the flame is entirely extinguished, (V): shrinkage of the outermost edge flame without self-excitation followed by shrinkage or survival of the center flame. These oscillation and extinction modes could be identified well to the behavior of edge flame. The result also showed that the edge flame was influenced significantly by the conductive heat losses to the flame center or ambient He curtain flow.

  • PDF

Numerical Analysis on Flow Characteristics of a Vane Pump (Vane Pump의 유동 특성에 대한 수치 해석)

  • Lee, Sang-Hyuk;Jin, Bong-Yong;Hur, Nahm-Keon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.1 s.40
    • /
    • pp.34-40
    • /
    • 2007
  • In this study, the characteristic of a vane pump of automotive power steering system is numerically analyzed. The vane pump changes the energy level of operation fluid by converting mechanical input power to hydraulic output. To simulate this mechanism, moving mesh technique is adopted. As a result, the flow rate and pressure are obtained by numerical analysis. The flow rate agrees well with the experimental data. Moreover, the variation and oscillation of the pressure around the rotating vane are observed. As a result of flow characteristics, The difference of pressure between both side of vane tip causes the back flow into the rotor. As the rotational velocity increases, the flow rate at the outlet and the pressure in the vane tip rises with higher amplitude of oscillation. In order to reducing the oscillation, the design of devices for decreasing the cross-area of the outlet part and returning the flow from the outlet to the inlet is required.

Marangoni Convection Instability of a Liquid Floating Zone in a Simulated Microgravity (모사된 미세중력장내 액체부유대에서의 Marangoni대류의 불안정성)

  • 이진호;이동진;전창덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.456-466
    • /
    • 1994
  • Experimental investigation was made to study the mechanism of fluid and thermal oscillation phenomena of surface-tension driven flow in a cylindrical liquid column heated from above which is the low-gravity floating zone simulated on earth. Hexadecane, octadecane, silicon oil (10cs), FC-40 and water are used as the test liquids. The onset of the oscillatory thermocapillary convection appears when Marangoni number exceeds its criteria value and is found to be due to the coupling among velocity and temperature field with the free surface deformation. The frequency of temperature oscillation decreases with increasing aspect ratio for a given diameter and Marangoni number and the oscillation level increases with Marangoni number. The flow pattern in the liquid column appears either as symmetric or asymmetric 3-D flow due to the oscillatory flow in the azimuthal direction. The free surface deformation also occurs either as symmetric or asymmetric mode and its frequency is consistent with those of flow and temperature oscillations. The amplitude of surface deformation also increases with Marangoni number.

An Analysis on Combustion Instability in Solid Rocket Motor of 4 Slotted Tube Grain (4 Slotted Tube형 고체 추진기관의 연소불안정 거동 현상 분석)

  • Cho, Ki-Hong;Kim, Eui-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.48-56
    • /
    • 2011
  • A Possibility of combustion instability on longitudinal mode has a high level at large scale of L/D. Solid propellant has a metal particle and a grain of control to pressure oscillation. Solid rocket motor in slotted-tube grain controls pressure oscillation of longitudinal mode. Slotted-tube grain restrains longitudinal 1st pressure oscillation. But cavity volume of aft. insulation ablation amplifies 2nd pressure o scillation by vortext shedding. A study has suppressed combustion instability and vortex shedding by modified 4 slotted tube solid rocket motor design.

Decadal Changes in the Relationship between Arctic Oscillation and Surface Air Temperature over Korea (북극진동과 한반도 지표기온 관계의 장기변동성)

  • Jun, Ye-Jun;Song, Kanghyun;Son, Seok-Woo
    • Atmosphere
    • /
    • v.31 no.1
    • /
    • pp.61-71
    • /
    • 2021
  • The relationship between the Arctic Oscillation (AO) and surface air temperature (SAT) over Korea is re-examined using the long-term observation and reanalysis datasets for the period of December 1958 to February 2020. Over the entire period, Korean SAT is positively correlated with the AO index with a statistically significant correlation coefficient, greater than 0.4, only in the boreal winter. It is found that this correlation is not static but changes on the decadal time scale. While the 15-year moving correlations are as high as 0.6 in 1980s and 1990s, they are smaller than 0.3 in the other decades. It is revealed that this decadal variation is partly due to the AO structure change over the North Pacific. In the period of 1980s-1990s, the AO-related sea level pressure fluctuation is strong and well defined over the western North Pacific and the related temperature advection effectively changes the winter SAT over Korea. In the other periods, the AO-related circulation anomaly is either weak or mostly confined within the central North Pacific. This result suggests that Korean SAT-AO index relationship, which becomes insignificant in recent decades is highly dependent on mean flow change in the North Pacific.

Modeling the long-term vegetation dynamics of a backbarrier salt marsh in the Danish Wadden Sea

  • Daehyun Kim
    • Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.49-62
    • /
    • 2023
  • Background: Over the past three decades, gradual eustatic sea-level rise has been considered a primary exogenous factor in the increased frequency of flooding and biological changes in several salt marshes. Under this paradigm, the potential importance of short-term events, such as ocean storminess, in coastal hydrology and ecology is underrepresented in the literature. In this study, a simulation was developed to evaluate the influence of wind waves driven by atmospheric oscillations on sedimentary and vegetation dynamics at the Skallingen salt marsh in southwestern Denmark. The model was built based on long-term data of mean sea level, sediment accretion, and plant species composition collected at the Skallingen salt marsh from 1933-2006. In the model, the submergence frequency (number yr-1) was estimated as a combined function of wind-driven high water level (HWL) events (> 80 cm Danish Ordnance Datum) affected by the North Atlantic Oscillation (NAO) and changes in surface elevation (cm yr-1). Vegetation dynamics were represented as transitions between successional stages controlled by flooding effects. Two types of simulations were performed: (1) baseline modeling, which assumed no effect of wind-driven sea-level change, and (2) experimental modeling, which considered both normal tidal activity and wind-driven sea-level change. Results: Experimental modeling successfully represented the patterns of vegetation change observed in the field. It realistically simulated a retarded or retrogressive successional state dominated by early- to mid-successional species, despite a continuous increase in surface elevation at Skallingen. This situation is believed to be caused by an increase in extreme HWL events that cannot occur without meteorological ocean storms. In contrast, baseline modeling showed progressive succession towards the predominance of late-successional species, which was not the then-current state in the marsh. Conclusions: These findings support the hypothesis that variations in the NAO index toward its positive phase have increased storminess and wind tides on the North Sea surface (especially since the 1980s). This led to an increased frequency and duration of submergence and delayed ecological succession. Researchers should therefore employ a multitemporal perspective, recognizing the importance of short-term sea-level changes nested within long-term gradual trends.

The Relationship between the Arctic Oscillation and Heatwaves on the Korean Peninsula (여름철 북극 진동과 한반도 폭염의 관련성)

  • Jeong-Hun Kim;El Noh;Maeng-Ki Kim
    • The Korean Journal of Quaternary Research
    • /
    • v.33 no.1_2
    • /
    • pp.25-35
    • /
    • 2021
  • In this study, we identified characteristics of heatwaves on the Korean Peninsula and related atmospheric circulation patterns using data on the daily maximum temperature (TMX) and reanalysis data for the past 42 years (1979-2020) and analyzed their connection to the Arctic oscillation (AO). The heatwave on the Korean Peninsula showed to be stronger and more frequent in the 2000s. The recent strong and frequent heatwaves on the Korean Peninsula are mainly affected by abnormal high-pressure over the Korean Peninsula on the middle/upper-level atmosphere and the strengthening of the North Pacific high pressure. Interestingly, composite difference of sea level pressure showed very similar results to the positive AO pattern. The correlation coefficients between the summertime AO and the TMX and HWD of the Korean Peninsula were 0.407 and 0.437, respectively, which showed a statistical significance in 1%, and showed a clear relationship with the abnormal high-pressure over the Korean Peninsula and the strengthening of the North Pacific high pressure. In addition, in the positive AO phase, the TMX and HWD of the Korean peninsula were approximately 30.1 ℃ and 14.6 days, which were about 1.2 ℃ and 8.8 days higher than in the negative AO phase, respectively. As a result of the 15-year moving average correlation analysis, the relationship between the heatwave and AO on the Korean Peninsula has increased significantly since 2003, and the linear relationship between them has become more apparent. Moreover, after the 2000s, when the relationship developed, AO had more strongly induced the atmospheric circulation pattern to be more favorable to the occurrence of heatwaves in the Korean Peninsula. This study implies that understanding the AO, which is the large-scale variability in the Northern Hemisphere, and the Arctic-mid latitude teleconnection, can improve the performance of global climate models and help predict the seasonality of the summer heatwave on the Korean Peninsula.

Electrical properties of nanoscale junctionless p-channel MuGFET at cryogenic temperature (극저온에서 나노스케일 무접합 p-채널 다중 게이트 FET의 전기적 특성)

  • Lee, Seung-Min;Park, Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1885-1890
    • /
    • 2013
  • In this paper, the electrical properties of nanoscale junctionless p-channel MuGFET at cryogenic temperature have been analyzed experimentally. The experiment was performed using a cryogenic probe station which uses the liquid Helium. It has been observed that the drain current oscillation at low drain voltage and cryogenic temperature was more pronounced in junctionless transistor than in accumulation mode transistor. The reason for more marked oscillation is due to the smaller electrical cross section area of the inversion channel which is formed at the center of silicon film in junctionless transistor. It was also observed that the drain current and maximum transconductance were increased as the measurement temperature increased. This is resulted from the increase of hole mobility and the decrease of the threshold voltage as the measurement temperature increases. The drain current oscillation due to the quantum effects can be occurred up to the room temperature when the device size scales down to the nanometer level.

Compensation for temperature-level control of tanked water system with time delay

  • Nakamura, Masatoshi;Watanabe, Kiyoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.42-47
    • /
    • 1993
  • Importance of separation of a nonlinear dynamical system into nonlinear static part and linear dynamical part was insisted in designing a controller for the nonlinear system. We further proposed compensation techniques for oscillation of controlled variables caused by system time delay and compensation of steady state errors caused by modelling errors of the systems. The proposed principle of designing procedure and the compensation methods were discussed by applying them for temperature and level control of an actual tanked water system.

  • PDF

ANALYSIS OF ELECTROWETTING DYNAMICS WITH LEVEL SET METHOD AND ASSESSMENT OF PROPERTY INTERPOLATION METHODS (레벨셋 기법을 이용한 전기습윤 현상의 동적 거동에 대한 해석 및 물성 보간 방법에 대한 고찰)

  • Park, J.K.;Kang, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.551-555
    • /
    • 2010
  • Electrowetting is a versatile tool to handle tiny droplets and forms a backbone of digital microfluidics. Numerical analysis is necessary to fully understand the dynamics of electrowetting, especially in designing electrowetting-based devices, such as liquid lenses and reflective displays. We developed a numerical method to analyze the general contact-line problems, incorporating dynamic contact angle models. The method is based on the conservative level set method to capture the interface of two fluids without loss of mass. We applied the method to the analysis of spreading process of a sessile droplet for step input voltages and oscillation of the droplet for alternating input voltages in electrowetting. The result was compared with experimental data. It is shown that contact line friction significantly affects the contact line motion and the oscillation amplitude. The pinning process of contact line was well represented by including the hysteresis effect in the contact angle models. In level set method, in the mean time, material properties are made to change smoothly across an interface of two materials with different properties by introducing an interpolation or smoothing scheme. So far, the weighted arithmetic mean (WAM) method has been exclusively adopted in level set method, without complete assessment for its validity. We viscosity, thermal conductivity, electrical conductivity, and permittivity, can be an alternative. I.e., the WHM gives more accurate results than the WAM method in certain circumstances. The interpolation scheme should be selected considering various characteristics including type of property, ratio of property of two fluids, geometry of interface, and so on.

  • PDF