DOI QR코드

DOI QR Code

Modeling the long-term vegetation dynamics of a backbarrier salt marsh in the Danish Wadden Sea

  • Daehyun Kim (Earth Surface Systems Lab, Department of Geography, Seoul National University)
  • Received : 2023.05.25
  • Accepted : 2023.06.15
  • Published : 2023.06.30

Abstract

Background: Over the past three decades, gradual eustatic sea-level rise has been considered a primary exogenous factor in the increased frequency of flooding and biological changes in several salt marshes. Under this paradigm, the potential importance of short-term events, such as ocean storminess, in coastal hydrology and ecology is underrepresented in the literature. In this study, a simulation was developed to evaluate the influence of wind waves driven by atmospheric oscillations on sedimentary and vegetation dynamics at the Skallingen salt marsh in southwestern Denmark. The model was built based on long-term data of mean sea level, sediment accretion, and plant species composition collected at the Skallingen salt marsh from 1933-2006. In the model, the submergence frequency (number yr-1) was estimated as a combined function of wind-driven high water level (HWL) events (> 80 cm Danish Ordnance Datum) affected by the North Atlantic Oscillation (NAO) and changes in surface elevation (cm yr-1). Vegetation dynamics were represented as transitions between successional stages controlled by flooding effects. Two types of simulations were performed: (1) baseline modeling, which assumed no effect of wind-driven sea-level change, and (2) experimental modeling, which considered both normal tidal activity and wind-driven sea-level change. Results: Experimental modeling successfully represented the patterns of vegetation change observed in the field. It realistically simulated a retarded or retrogressive successional state dominated by early- to mid-successional species, despite a continuous increase in surface elevation at Skallingen. This situation is believed to be caused by an increase in extreme HWL events that cannot occur without meteorological ocean storms. In contrast, baseline modeling showed progressive succession towards the predominance of late-successional species, which was not the then-current state in the marsh. Conclusions: These findings support the hypothesis that variations in the NAO index toward its positive phase have increased storminess and wind tides on the North Sea surface (especially since the 1980s). This led to an increased frequency and duration of submergence and delayed ecological succession. Researchers should therefore employ a multitemporal perspective, recognizing the importance of short-term sea-level changes nested within long-term gradual trends.

Keywords

Acknowledgement

The logistical support of Professor Jesper Bartholdy at the Skallingen field station is greatly appreciated.

References

  1. Aagaard T, Nielsen N, Nielsen J. Skallingen - origin and evolution of a barrier spit. Copenhagen: Reitzel; 1995. p. 85.
  2. Adam P. Saltmarsh ecology. Cambridge: Cambridge University Press; 1990.
  3. Allen TFH, Starr TB. Hierarchy: perspectives for ecological complexity. Chicago (IL): University of Chicago Press; 1982.
  4. Bakker JP, de Leeuw J, Dijkema KS, Leendertse PC, Prins HHT, Rozema J. Salt marshes along the coast of the Netherlands. Hydrobiologia. 1993;265(1-3):73-95. https://doi.org/10.1007/BF00007263.
  5. Bartholdy AT. Modeling salt marsh accretion using long-term observations of clay thicknesses, Skallingen Denmark [Master's thesis]. Copenhagen: University of Copenhagen; 2008.
  6. Bartholdy J, Aagaard T. Storm surge effects on a back-barrier tidal flat of the Danish Wadden Sea. Geo-Mar Lett. 2001;20(3):133-41. https://doi.org/10.1007/s003670000048.
  7. Bartholdy J, Bartholdy AT, Kim D, Pedersen JBT. On autochthonous organic production and its implication for the consolidation of temperate salt marshes. Mar Geol. 2014;351:53-7. https://doi.org/10.1016/j.margeo.2014.03.015.
  8. Bartholdy J, Brivio L, Bartholdy A, Kim D, Fruergaard M. The Skallingen spit, Denmark: birth of a back-barrier saltmarsh. Geo-Mar Lett. 2018;38(2):153-66. https://doi.org/10.1007/s00367-017-0523-5.
  9. Bartholdy J, Christiansen C, Kunzendorf H. Long term variations in backbarrier salt marsh deposition on the Skallingen peninsula - the Danish Wadden Sea. Mar Geol. 2004;203(1-2):1-21. https://doi.org/10.1016/S0025-3227(03)00337-2.
  10. Beeftink WG. Vegetation responses to changes in tidal inundation of salt marshes. In: Van Andel J, Bakker JP, Snaydon RW, editors. Disturbance in grasslands. Dordrecht: Springer; 1987. p. 97-117.
  11. Bertness MD, Shumway SW. Competition and facilitation in marsh plants. Am Nat. 1993;142(4):718-24. https://doi.org/10.1086/285567.
  12. Bertness MD, Gough L, Shumway SW. Salt tolerances and the distribution of fugitive salt marsh plants. Ecology. 1992;73(5):1842-51. https://doi.org/10.2307/1940035.
  13. Bertness MD, Ewanchuk PJ, Silliman BR. Anthropogenic modification of New England salt marsh landscapes. Proc Natl Acad Sci U S A. 2002;99(3):1395-8. https://doi.org/10.1073/pnas.022447299.
  14. Bromirski PD, Flick RE, Cayan DR. Storminess variability along the California coast: 1858-2000. J Clim. 2003;16(6):982-93. https://doi.org/10.1175/1520-0442(2003)016<0982:SVATCC>2.0.CO;2.
  15. Csillag F, Fortin MJ, Dungan JL. On the limits and extensions of the definition of scale. Bull Ecol Soc Am. 2000;81(3):230-2.
  16. Davies JL. A morphogenic approach to world shorelines. Ann Geomorphol. 1964;8(5):127-42. https://doi.org/10.1127/zfg/mortensen/8/1964/127.
  17. Davy AJ, Brown MJH, Mossman HL, Grant A. Colonization of a newly developing salt marsh: disentangling independent effects of elevation and redox potential on halophytes. J Ecol. 2011;99(6):1350-7. https://doi.org/10.1111/j.1365-2745.2011.01870.x
  18. Delcourt HR, Delcourt PA, Webb T 3rd. Dynamic plant ecology: the spectrum of vegetational change in space and time. Quat Sci Rev. 1982;1(3):153-75. https://doi.org/10.1016/0277-3791(82)90008-7.
  19. Dufrene M, Legendre P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr. 1997;67(3): 345-66. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2.
  20. Emery NC, Ewanchuk PJ, Bertness MD. Competition and salt-marsh plant zonation: stress tolerators may be dominant competitors. Ecology. 2001;82(9):2471-85. https://doi.org/10.2307/2679929.
  21. Erchinger HF. [Dunen, Watt und Salzwiesen: Schutz und Erhaltung von Kuste und Inseln, Tier- und Pflanzenwelt]. Hannover: Der Niedersachsische Minister fur Ernahrung, Landwirtschaft und Forsten; 1985. German.
  22. Feagin RA, Martinez ML, Mendoza-Gonzalez G, Costanza R. Salt marsh zonal migration and ecosystem service change in response to global sea level rise: a case study from an urban region. Ecol Soc. 2010;15(4):14.
  23. Guenther H, Rosenthal W, Stawarz M, Carretero JC, Gomez M, Lozano I, et al. The wave climate of the Northeast Atlantic over the period 1955-1994: the WASA wave hindcast. 1997. https://www.osti.gov/etdeweb/biblio/300083. Accessed 23 Mar 2022.
  24. Jacobsen B. Unpublished field books. 1958.
  25. Jensen A. On the ecophysiology of Halimione portulacoides. Vegetatio. 1985;61(1-3):231-40. https://doi.org/10.1007/BF00039829.
  26. Kim D. Spatial and temporal dynamics salt marsh vegetation across scales [PhD dissertation]. College Station (TX): Texas A&M University; 2009.
  27. Kim D. Biogeomorphic feedbacks drive dynamics of vegetation-landform complex in a coastal riparian system. Ecosphere. 2012;3(8):74. https://doi.org/10.1890/ES12-00028.1.
  28. Kim D. Rates of vegetation dynamics along elevation gradients in a backbarrier salt marsh of the Danish Wadden Sea. Estuaries Coasts. 2014;37(3):610-20. https://doi.org/10.1007/s12237-013-9697-x.
  29. Kim D. Characterizing the pathway and rate of salt marsh vegetation dynamics: a multivariate approach. Estuaries Coasts. 2018a;41(5):1370-80. https://doi.org/10.1007/s12237-018-0377-8.
  30. Kim D. Modeling spatial and temporal dynamics of plant species richness across tidal creeks in a temperate salt marsh. Ecol Indic. 2018b;93:188-95. https://doi.org/10.1016/j.ecolind.2018.04.080.
  31. Kim D. Selection of scale can reverse the importance of stochastic controls on community assembly. Phys Geogr. 2019;40(2):111-26. https://doi.org/10.1080/02723646.2018.1548831.
  32. Kim D, Phillips JD. Predicting the structure and mode of vegetation dynamics: an application of graph theory to state-and-transition models. Ecol Model. 2013;265:64-73. https://doi.org/10.1016/j.ecolmodel.2013.06.002.
  33. Kim D, Ohr S. Coexistence of plant species under harsh environmental conditions: an evaluation of niche differentiation and stochasticity along salt marsh creeks. J Ecol Environ. 2020;44:19. https://doi.org/10.1186/s41610-020-00161-y.
  34. Kim D, Lee K. Landforms as combined expressions of multiple reciprocally interacting species: refining the ecosystem engineering concept. Earth Sci Rev. 2022;232:104152. https://doi.org/10.1016/j.earscirev.2022.104152.
  35. Kim D, Cairns DM, Bartholdy J. Environmental controls on multiscale spatial patterns of salt marsh vegetation. Phys Geogr. 2010;31(1):58-78. https://doi.org/10.2747/0272-3646.31.1.58.
  36. Kim D, Bartholdy J, Jung S, Cairns DM. Salt marshes as potential indicators of global climate change. Geogr Compass. 2011a;5(5):219-36. https://doi.org/10.1111/j.1749-8198.2011.00421.x.
  37. Kim D, Cairns DM, Bartholdy J. Wind-driven sea-level variation influences dynamics of salt marsh vegetation. Ann Assoc Am Geogr. 2011b;101(2):231-48. https://doi.org/10.1080/00045608.2010.544933.
  38. Kim D, Cairns DM, Bartholdy J, Morgan CLS. Scale-dependent correspondence of floristic and edaphic gradients across salt marsh creeks. Ann Assoc Am Geogr. 2012;102(2):276-94. https://doi.org/10.1080/00045608.2011.620520
  39. Kim D, Grant WE, Cairns DM, Bartholdy J. Effects of the North Atlantic Oscillation and wind waves on salt marsh dynamics in the Danish Wadden Sea: a quantitative model as proof of concept. Geo-Mar Lett. 2013a;33(4):253-61. https://doi.org/10.1007/s00367-013-0324-4.
  40. Kim D, Cairns DM, Bartholdy J. Tidal creek morphology and sediment type influence spatial trends in salt marsh vegetation. Prof Geogr. 2013b;65(4):544-60. https://doi.org/10.1080/00330124.2013.820617.
  41. Kim D, Bartholdy J, Bartholdy AT. Varying patterns of vegetation dynamics across multiple levels of organization in a salt marsh of the Danish Wadden Sea. Hydrobiologia. 2016;771(1):67-81. https://doi.org/10.1007/s10750-015-2615-4.
  42. Kirwan ML, Guntenspergen GR, D'Alpaos A, Morris JT, Mudd SM, Temmerman S. Limits on the adaptability of coastal marshes to rising sea level. Geophys Res Lett. 2010;37(23):L23401. https://doi.org/10.1029/2010GL045489.
  43. Levin SA. The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology. 1992;73(6):1943-67. https://doi.org/10.2307/1941447.
  44. McCune B, Grace JB, Urban DL. Analysis of ecological communities. 2nd ed. Gleneden Beach (OR): MjM Software Design; 2002. 
  45. Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR. Responses of coastal wetlands to rising sea level. Ecology. 2002;83(10):2869-77. https://doi.org/10.1890/0012-9658(2002)083[2869:ROCWTR]2.0.CO;2.
  46. Nielsen N. Eine methode zur exakten sedimentationsmessung [A method for exact measurements of sedimentation]. Copenhagen: Levin & Munksgaard; 1935. German.
  47. Olff H, De Leeuw J, Bakker JP, Platerink RJ, van Wijnen HJ. Vegetation succession and herbivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevational gradient. J Ecol. 1997;85(6):799-814. https://doi.org/10.2307/2960603.
  48. O'Neill RV, Deangelis DL, Waide JB, Allen TFH. A hierarchical concept of ecosystems. Princeton (NJ): Princeton University Press; 1986.
  49. Paeth H, Hense A, Glowienka-Hense R, Voss S, Cubasch U. The North Atlantic Oscillation as an indicator for greenhouse-gas induced regional climate change. Clim Dyn. 1999;15(12):953-60. https://doi.org/10.1007/s003820050324.
  50. Park EJ, Yu KB, Ku CY, Psuty NP, Kim D, Shin YH. Short-term sedimentation processes and accretion rates in the Sunchon Bay estuarine marsh, South Korea. J Coast Res. 2012;28(5):1057-67. https://doi.org/10.2112/JCOASTRES-D-11-00141.1.
  51. Pennings SC, Callaway RM. Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology. 1992;73(2):681-90. https://doi.org/10.2307/1940774.
  52. Pennings SC, Grant MB, Bertness MD. Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. J Ecol. 2005;93(1):159-67. https://doi.org/10.1111/j.1365-2745.2004.00959.x.
  53. Ranwell DS. Ecology of salt marshes and sand dunes. London: Chapman and Hall; 1972.
  54. Reed DJ. The response of coastal marshes to sea-level rise: survival or submergence? Earth Surf Process Landf. 1995;20(1):39-48. https://doi.org/10.1002/esp.3290200105.
  55. Roozen AJM, Westhoff V. A study on long-term salt-marsh succession using permanent plots. Vegetatio. 1985;61(1-3),23-32. https://doi.org/10.1007/BF00039807.
  56. Silvestri S, Defina A, Marani M. Tidal regime, salinity and salt marsh plant zonation. Estuar Coast Shelf Sci. 2005;62(1-2):119-30. https://doi.org/10.1016/j.ecss.2004.08.010.
  57. Srivastava DS, Jefferies RL. The effect of salinity on the leaf and shoot demography of two arctic forage species. J Ecol. 1995;83(3):421-30. https://doi.org/10.2307/2261595.
  58. Suchrow S, Jensen K. Plant species responses to an elevational gradient in German North Sea salt marshes. Wetlands. 2010;30(4):735-46. https://doi.org/10.1007/s13157-010-0073-3.
  59. Tind K. Danmarks flora. 2nd ed. Copenhagen: Gyldendalske Boghandel; 2003.
  60. van de Koppel J, van der Wal D, Bakker JP, Herman PM. Self-organization and vegetation collapse in salt marsh ecosystems. Am Nat. 2005;165(1):E1-12. https://doi.org/10.1086/426602.
  61. Van Wijnen HJ, Bakker JP. Nitrogen and phosphorus limitation in a coastal barrier salt marsh: the implications for vegetation succession. J Ecol. 1999;87(2):265-72. https://doi.org/10.1046/j.1365-2745.1999.00349.x.
  62. Ward JH Jr. Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963;58(301):236-44. https://doi.org/10.1080/01621459.1963.10500845.
  63. Warren RS, Niering WA. Vegetation change on a northeast tidal marsh: interaction of sea-level rise and marsh accretion. Ecology. 1993;74(1):96-103. https://doi.org/10.2307/1939504.
  64. Westhoff V. Salt marsh communities of three West Frisian Islands, with some notes on their long-term succession during half a century. In: Huiskes AHL, Blom CWPM, Rozema J, editors. Vegetation between land and sea: structure and processes. Dordrecht: Springer; 1987. p. 16-41.
  65. Whittaker RJ, Willis KJ, Field R. Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr. 2001;28(4):453-70. https://doi.org/10.1046/j.1365-2699.2001.00563.x.