• Title/Summary/Keyword: level of mathematics understanding

Search Result 196, Processing Time 0.252 seconds

A study on mathematical justification activities in elementary school (초등학생의 수학적 정당화에 관한 연구)

  • 권성룡
    • Education of Primary School Mathematics
    • /
    • v.7 no.2
    • /
    • pp.85-99
    • /
    • 2003
  • In this paper, firstly examined various proofs types that cover informal empirical justifications by Balacheff, Miyazaki, and Harel & Sowder and Tall. Using these theoretical frameworks, justification activities by 5th graders were analyzed and several conclusions were drawn as follow: 1) Children in 5th grade could justify using various proofs types and method ranged from external proofs schemes by Harel & Sowder to thought experiment by Balacheff This implies that children in elementary school can justify various mathematical statements of ideas for themselves. To improve children's proving abilities, rich experience for justifying should be provided. 2) Activities that make conjectures from cases then justify should be given to students in order to develop a sense of necessity of formal proof. 3) Children have to understand the meaning and usage of mathematical symbol to advance to formal deductive proofs. 4) New theoretical framework is needed to be established to provide a framework for research on elementary school children's justification activities. Research on proof mainly focused on the type of proof in terms of reasoning and activities involved. But proof types are also influenced by the tasks given. In elementary school, tasks that require physical activities or examples are provided. To develop students'various proof types, tasks that require various justification methods should be provided. 5) Children's justification type were influenced not only by development level but also by the concept they had. 6) Justification activities provide useful situation that assess students'mathematical understanding. 7) Teachers understanding toward role of proof(verification, explanation, communication, discovery, systematization) should be the starting point of proof activities.

  • PDF

Preservice elementary teachers' pedagogical content knowledge of addition and subtraction (예비초등교사의 덧셈과 뺄셈에 관한 교수학적 지식)

  • 이종욱
    • Journal of Educational Research in Mathematics
    • /
    • v.13 no.4
    • /
    • pp.447-462
    • /
    • 2003
  • The purpose of this study was to Investigate the preservice elementary teachers' pedagogical content knowledge of addition and subtraction. The subjects for data collection were 29 preservice elementary teachers and data were collected through open ended problems. The findings imply that the preservice elementary teachers show low level of understanding of addition and subtraction such as the word problem posing and the contexts of part-part-whole and compare. The research results indicate that the preservice elementary teachers possess primarily a procedural knowledge of pedagogical content knowledge and don't understand relationship with real-world situation. This study provide the information available on developing program for preservice elementary teachers.

  • PDF

A Case Study on Slow Learners' Mathematization of Trigonometric Functions, Using GSP (GSP를 활용한 삼각함수에서 학습부진아의 수학화 과정에 관한 사례연구)

  • Moon, Hye-Ryung;Choi-Koh, Sang-Sook
    • The Mathematical Education
    • /
    • v.49 no.3
    • /
    • pp.353-373
    • /
    • 2010
  • This research was to help slow learners to be motivated and to make their outcome productive, using GSP based on the mathematization theory for learning mathematics, as a way of encouraging the learner-centered approach. With 2 of the second graders in a high school, who had not yet understood trigonometric functions in their first grade period, 7 units of lesson plans were designed for the research. The results showed that first, understanding real life contexts and analyzing properties by observation, and experiment using GSP, to build the concept of trigonometric functions could be a foothold on which learner's organization and outcome from a horizontal mathematization led to vertical mathematization. Despite the delay during the level-up-stage for a while, the learners could attain the vertical mathematization stage and moreover the applicative mathematization through effective use of GSP and the interaction between the learners or a teacher and the learners. Second, using GSP was a vertical tool of connecting horizontal mathematization with vertical mathematization in forming the concept of trigonometric functions and its meaning could be understood by their verbalizing and presenting the outcomes through their active performance. Using GSP is helpful for slow learners to overcome learning difficulties, based on the instructional materials designed by Realistic Mathematics Education.

초등수학 기하문제해결에서의 시각화 과정 분석

  • Yun, Yea-Joo;Kim, Sung-Joon
    • East Asian mathematical journal
    • /
    • v.26 no.4
    • /
    • pp.553-579
    • /
    • 2010
  • Geometric education emphasize reasoning ability and spatial sense through development of logical thinking and intuitions in space. Researches about space understanding go along with investigations of space perception ability which is composed of space relationship, space visualization, space direction etc. Especially space visualization is one of the factors which try conclusion with geometric problem solving. But studies about space visualization are limited to middle school geometric education, studies in elementary level haven't been done until now. Namely, discussions about elementary students' space visualization process and ability in plane or space figures is deficient in relation to geometric problem solving. This paper examines these aspects, especially in relation to plane and space problem solving in elementary levels. Firstly we propose the analysis frame to investigate a visualization process for plane problem solving and a visualization ability for space problem solving. Nextly we select 13 elementary students, and observe closely how a visualization process is progress and how a visualization ability is played role in geometric problem solving. Together with these analyses, we propose concrete examples of visualization ability which make a road to geometric problem solving. Through these analysis, this paper aims at deriving various discussions about visualization in geometric problem solving of the elementary mathematics.

An Analysis on the Mathematics Curriculum of Gifted High School - Focusing on Content Area and Subject Competency- (영재학교 수학과 교육과정 분석 -내용 영역과 교과 역량을 중심으로-)

  • Lee, Eungyeong;Jeon, Youngju
    • Journal of the Korean School Mathematics Society
    • /
    • v.21 no.1
    • /
    • pp.1-18
    • /
    • 2018
  • This study aims to analyze the mathematics curriculum in the gifted school and obtain the understanding of the current situation of education for the math-gifted children in Korea, therefore providing a point of view for the improvements. In order to attain these purposes, the study examined the subject competency for the mathematics set by regular mathematics curriculum system and 2015 revision curriculum, and extracted the analytical standards, based on which the education plan documents of each gifted school were analyzed. The conclusion that has been made based on the analysis results is as follows. First of all, the curriculum of mathematics in the gifted schools in korea is heavily concentrated on analytics and algebra. Secondly, in mathematics curriculum for gifted children in Korea puts the most emphasis on the problem solving competency. Third, geometry subject in the mathematics curriculum of Korean gifted schools deals with the given content only at the level of regular high school curriculum. Fourth, learning materials in most gifted schools are not the ones especially revised and adapted for the gifted students but usually the ones for the college students. Lastly, gifted schools are running the curriculum featured with curriculum compacting and advance learning focusing on acceleration.

A Case Study on Levels of Arithmetical Thinking of an Underachiever in Number and Operation - Focusing on a 6th Grader - (수와 연산 영역 부진 학생의 산술적 사고 수준에 관한 사례 연구 - 초등학교 6학년 한 학생을 대상으로 -)

  • Lim, Miin;Chang, Hyewon
    • Journal of Educational Research in Mathematics
    • /
    • v.26 no.3
    • /
    • pp.489-508
    • /
    • 2016
  • Number and operation is the most basic and crucial part in elementary mathematics but is also well known as a part that students have lots of difficulties. A lot of researches have been done in various ways to solve this problem but it can't be solved fundamentally by emphasizing calculation method and skill. So we need to go over it in terms of relevant arithmetical thinking. This study aims to diagnose the cause of an underachiever's difficulties about arithmetic and finds a prescription for her by analyzing her level of arithmetical thinking based on Guberman(2014) and understanding about arithmetic. To achieve this goal, we chose an 6th grader who's having a hard time particularly in number and operation among mathematics strands and conducted a case study carrying out arithmetical thinking level tests on two separate occasions and analyzing her responses. As a result of analyzing data, her arithmetical thinking corresponded to Guberman's first level and it is also turned out that student is suffering from some arithmetic concepts. We suggest several implications for teaching of arithmetic at elementary school in terms of the development of arithmetical thinking based on analysis result and discussion about it.

An analysis of errors in problem solving of the function unit in the first grade highschool (고등학교 1학년 함수단원 문제해결에서의 오류에 대한 분석)

  • Mun, Hye-Young;Kim, Yung-Hwan
    • Journal of the Korean School Mathematics Society
    • /
    • v.14 no.3
    • /
    • pp.277-293
    • /
    • 2011
  • The purpose of mathematics education is to develop the ability of transforming various problems in general situations into mathematics problems and then solving the problem mathematically. Various teaching-learning methods for improving the ability of the mathematics problem-solving can be tried. However, it is necessary to choose an appropriate teaching-learning method after figuring out students' level of understanding the mathematics learning or their problem-solving strategies. The error analysis is helpful for mathematics learning by providing teachers more efficient teaching strategies and by letting students know the cause of failure and then find a correct way. The following subjects were set up and analyzed. First, the error classification pattern was set up. Second, the errors in the solving process of the function problems were analyzed according to the error classification pattern. For this study, the survey was conducted to 90 first grade students of ${\bigcirc}{\bigcirc}$high school in Chung-nam. They were asked to solve 8 problems in the function part. The following error classification patterns were set up by referring to the preceding studies about the error and the error patterns shown in the survey. (1)Misused Data, (2)Misinterpreted Language, (3)Logically Invalid Inference, (4)Distorted Theorem or Definition, (5)Unverified Solution, (6)Technical Errors, (7)Discontinuance of solving process The results of the analysis of errors due to the above error classification pattern were given below First, students don't understand the concept of the function completely. Even if they do, they lack in the application ability. Second, students make many mistakes when they interpret the mathematics problem into different types of languages such as equations, signals, graphs, and figures. Third, students misuse or ignore the data given in the problem. Fourth, students often give up or never try the solving process. The research on the error analysis should be done further because it provides the useful information for the teaching-learning process.

  • PDF

Investigation of the Problem Solving in Open-Problem Related to Area (넓이관련 열린 문제에 관한 문제해결 과정 분석)

  • 김민경
    • The Mathematical Education
    • /
    • v.43 no.3
    • /
    • pp.275-289
    • /
    • 2004
  • The purpose of the study is to investigate how children and preservice teachers would make a progress in solving the open-problems related to area. In knowledge-based information age, information inquiry, information construction, and problem solving are required. At the level of elementary school mathematics, area is mainly focused on the shape of polygon such as square, rectangle. However, the shape which we need to figure out at some point would not be always polygon-shape. With this perspective, many open-problems are introduced to children as well as preservice teacher. Then their responses are analyzed in terms of their logical thinking and their understanding of area. In order to make students improve their critical thinking and problem solving ability in real situation, the use of open problems could be one of the valuable methods to apply.

  • PDF

A case study for intercontinental comparison of herd behavior in global stock markets

  • Lee, Woojoo;Choi, Yang Ho;Kim, Changki;Ahn, Jae Youn
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.2
    • /
    • pp.185-197
    • /
    • 2018
  • Measuring market fear is an important way of understanding fundamental economic phenomena related to financial crises. There have been several approaches to measure market fear or panic level in a financial market. Recently, herd behavior has gained its popularity as important economic phenomena explaining the fear in the financial market. In this paper, we investigate herd behavior in global stock markets with a focus on intercontinental comparison. While various risk measures are available for the detection of herd behavior in the market, we use the standardized herd behavior index in Dhaene et al. (Insurance: Mathematics and Economics, 50, 357-370, 2012b) and Lee and Ahn (Dependence Modeling, 5, 316-329, 2017) for the comparison of herd behaviors in global stock markets. A global stock market data from Morgan Stanley Capital International is used to study herd behavior especially during periods of financial crises.

3rd, 4th and 5th Graders' Probability Understanding (초등학교 3, 4, 5학년 학생들의 확률 이해 실태)

  • Yoon, Hye-Young;Lee, Kwang-Ho
    • Education of Primary School Mathematics
    • /
    • v.14 no.1
    • /
    • pp.69-79
    • /
    • 2011
  • The purpose of this study is to analyze 3rd, 4th and 5th graders' probability understanding and raise issues concerning instructional methods and search for the possibility of learning probability. For the purpose, a descriptive study through pencil-and-paper test regarding fairness, sample space, probability of event, probability comparison, independence and conditional probability was conducted. The following conclusions were drawn from the results obtained in this study. First, the 3rd, 4th, and 5th grade students scored the highest in the sample space questions. In descending order of skill, the students scored the highest in sample space following probability of events, fairness and probability comparison. Second, however, the level of independence understanding was low. There was no meaningful differences between grades and the conditional probability was the least understood. The independence is difficult to develop naturally according to cognitive development. The conditional probability recognizing the probability of an event changes in non-replacement situations was very difficult for these students. Third, there were significant differences between the 5th graders and the 3rd and 4th graders in the probability comparison questions. It shows that 5th graders understand the concept of proportion when they compare equal ratio probability of an event. The 3rd graers could do different ratio probability of an event more easily than equal ratio probability of an event after they were instructed on probability comparison.