• Title/Summary/Keyword: lesson design

Search Result 261, Processing Time 0.022 seconds

Exploring Teachers' Pedagogical Design Capacity: How Mathematics Teachers Plan and Design Their Mathematics Lessons (수업지도안 분석을 통한 수학교사의 수업설계역량(Pedagogical Design Capacity) 탐색)

  • Kim, Gooyeon;Jeon, MiHyun
    • The Mathematical Education
    • /
    • v.56 no.4
    • /
    • pp.365-385
    • /
    • 2017
  • This study aims to explore mathematics teachers' pedagogical design capacity. For this purpose, we googled and collected 327 lesson plans for middle-school mathematics and investigated how mathematics teachers plan and design their mathematics lessons through the format and structures, objectives and mathematical tasks, anticipation for students' thinking, and assessment and technology use. The findings from the data analysis suggest as follows: a) all the lesson plans are structured in a very similar way; b) the lesson plans seem to be based on the textbooks exclusively, that is, the mathematical tasks and flow is strictly followed and kept in the lesson plans in the way the textbooks suggested; c) the lesson plans do not include any evidence of what teachers anticipate for students' thinking and would do to resolve the students' issues; and d) the lesson plans do not contain any specific plans to assess students' thinking processes and reasoning qualitatively, and not intend to use technology in order to promote effective teaching and meaningful understanding.

What Teachers Consider Important in Lesson Design: Focusing on the Analysis of a Lesson Plan of Elementary Mathematics (교사가 수업 설계에서 중요하게 고려하는 요소: 초등 수학 수업지도안에 대한 분석을 중심으로)

  • Sunwoo, Jin;Pang, JeongSuk;Park, Yejin
    • Communications of Mathematical Education
    • /
    • v.35 no.1
    • /
    • pp.15-36
    • /
    • 2021
  • A well-designed mathematics lesson is the foundation for effective mathematics instruction. Given this significance, this paper focused on analyzing what would be important elements for in-service teachers in planning an elementary mathematics lesson. For this purpose, a total of 27 in-service teachers were asked to write down whatever they would consider important in designing a mathematics lesson. A mathematics lesson plan prepared by a pre-service teacher was provided for the in-service teachers. They were then asked to analyze the strengths of the lesson plan and to provide detailed feedback on how to improve it. The results of this study showed that the in-service teachers tended to analyze the given mathematics lesson plan in terms of what they considered important regarding lesson design. Such elements were specified when the in-service teachers described the strengths and feedback for improvement of the lesson plan. In particular, the aspects of instructional strategies and materials were explained in detail. Based on these results, this paper is expected to provoke discussions on lesson design of in-service teachers and subsequent research.

The Role of Science Knowledge Application in Improving Engineering Problem Solving Skills

  • Nam, Younkyeong;Chae, Jimin
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.436-445
    • /
    • 2019
  • This study presents how two types of integrated science and engineering lessons affect students' engineering problem solving skills and their perceptions of engineering. In total, 146 middle school students participated in this study. Eighty-six students participated in the Type I lesson (complete engineering design lesson with a science knowledge application) and 60 students participated in the Type II lesson (engineering design without a science knowledge application). Two main datasets, (1) students' Creative Engineering Problem Solving Propensity (CEPSP) measurement scores and (2) open-ended survey questions about students' perceptions of engineering, were collected before and after the lessons. The results of this study show that after participating in the Type I lesson, students' CEPSP scores significantly increased, whereas the CEPSP scores of the students who participated in the Type II lesson did not increase significantly. In addition, students who participated in the Type I lesson perceived engineering and the engineering integrated science lesson differently compared to the students who participated in the Type II lesson. The results of this study show that engineering integrated science, technology, engineering & mathematics (STEM) lessons should include a complete engineering design and a science knowledge application to improve students' engineering problem solving skills.

The characteristics of lesson design prepared by pre-service teachers according to the structural changes of lesson design template (수업 설계안 구조 변화에 따른 예비교사들의 수업 설계 특징 분석)

  • Lee, Seon Young;Han, Sunyoung
    • The Mathematical Education
    • /
    • v.60 no.1
    • /
    • pp.77-110
    • /
    • 2021
  • In this study, a student participation-centered class based on student mathematical thinking as a the meaningful subject was called a student thinking-based math class. And as a way to support these classes, I paid attention to lesson design. For student thinking-based mathematics classes, it is necessary not only to anticipate student thinking and teacher feedback, but also to plan in advance how to properly arrange and connect expected student responses. The student thinking-based lesson design template proposed in this study is a modified three-step(introduction, main topic, summary) lesson design template. The reason for revising the existing design template is that it has limitation that it cannot focus on mathematical thinking. Using the conceptual framework of student thinking-based mathematics lesson as a lens, the difference between the three-step lesson design prepared by pre-service teachers and the students' thinking-based lesson design prepared by the same pre-service teachers was analyzed. As a result of planning lessons using the student thinking-based lesson design, more attention was paid to the cognitive and social engagement of students. In addition, emphasis was placed in the role of teachers as formative facilitator. This study is of significant in that it recognizes the importance of classes focusing on students' mathematical thinking and provides tools to plan math classes based on students' thinking.

Exploring American Indian Students' Problem-Solving Propensity in the Context of Culturally Relevant STEM Topics (문화 반영적 융합교육(STEM) 주제 상황에서 미국 토착민 학생들의 문제 해결 성향에 대한 탐색)

  • Kim, Young-Rae;Nam, Youn-Kyeong
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.10 no.1
    • /
    • pp.1-16
    • /
    • 2017
  • This study presents an out-of-school problem-solving lesson we designed for American Indian students using a culturally relevant STEM topic. The lesson was titled "Shelter Design for Severe Weather Conditions." This shelter design lesson was developed based on an engineering design allowing us to integrate STEM topics within a traditional indigenous house-building context. This problem context was used to encourage students to apply their prior knowledge, experience, and community/cultural practice to solve problems. We implemented the lesson at a summer program on an American Indian reservation. Using the lesson, this study explores how American Indian students use cultural knowledge and experience to solve a STEM problem. We collected student data through pre- and post-STEM content knowledge tests, drawings and explanations of shelter models on the students' group worksheets, and classroom observations. We used interpretive and inductive methods to analyze the data. This study demonstrates that our culturally relevant, STEM problem-solving lesson helped the American Indian students solve a complex, real-world problem. This study examines how students' prior experiences and cultural knowledge affect their problem-solving strategies. Our findings have implications for further research on designing problem-solving lessons with culturally relevant STEM topics for students from historically marginalized populations.

Analysis of Argumentation Levels in Preservice Earth Science Teachers, Lesson Plans (예비 지구과학 교사의 교수학습지도안에 나타난 논증 수준 분석)

  • Park, Won-Mi;Kwak, Youngsun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.14 no.2
    • /
    • pp.123-135
    • /
    • 2021
  • In this study, we apply a lesson design process using an argumentation structure to preservice earth science teachers and analyzed argumentation levels displayed in the lesson plans written by preservice teachers in the process. As a result of the study, the preservice teachers designed a logically structured lesson by reflecting more argumentation components in the final lesson plan than the first one. In addition, in the case of lesson topics in which all argumentation elements were not explicitly presented in textbooks or curriculum, preservice teachers could not clearly reflect some argumentation components in the lesson plan. The conclusions and implications based on the results are as follows: First, it is necessary to use the argumentation structure as a tool to design logical science lessons, considering that argumentation levels of lesson plans written by preservice science teachers were improved by using argumentation structures in instructional design. Next, it is necessary to cultivate the preservice science teacher's ability to reconstruct the curriculum for science lesson design using the argumentation structure since argumentation levels of lesson plans written by preservice science teachers were limited to the argumentation components presented in the textbook and curriculum. Additionally, it is necessary to develop and apply a preservice teacher education program that uses the argumentation structure in the context of actual teaching activities so that preservice science teachers can not only understand argumentation but also improve their class expertise.

The Effect of Differentiated Instruction Design Model for Early Childhood on Development of Teacher's Professionalism (수준별 유아수업설계모형이 유아교사의 전문성 발달에 미치는 효과)

  • Kan, Jin-Sook;Keum, Mi-Suck;Lee, Ching-Chan
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.1
    • /
    • pp.56-78
    • /
    • 2012
  • This study which is an alternative exploration for improving the quality level of instruction considering the perception of the teachers in early childhood education field on instructional design is to develop Differentiated Instructional Design Model coincides with the purpose of differentiated instruction curricula and with instructional design principles, and to find out whether the model has significant effect on development of teacher's professionalism. With these purposes, the perception of 343 teachers from early childhood education institutions are investigated, and after component variables are set by drawing the instructional design model available in early childhood education field and reviewing the literature of differentiated instruction model, the Differentiated Instructional design Model for Early Childhood are developed based on FGI(Focus Group Interview) expert evaluation. The experimental study of 88 teachers working in childcare facilities was implemented for effectiveness verification. As a result, first, most teachers consider the priority on making the lesson plans as the development of early childhood and Kindergarten Educational Subjects, and they realize the development of instructional design model which contributes on lesson planning and implementation is much needed. Second, the Differentiated Instructional design Model for Early Childhood are developed, which consists of the cyclic process - pre-lesson phase, lesson implementation phase, and assessment phase -based on development characteristics of early childhood. Third, the experiment of the developed model showed that the scores of experimental group is significantly higher than those of comparative group in knowledge and technique development aspect, and self-understanding development aspect among the aspects of development of teacher's professionalism.

Suggesting a Framework for Science and Engineering Integrated Lesson Design and Engineering Design Level (과학·공학 융합 수업 준거틀 및 공학 설계 수준 제안)

  • Nam, Younkyeong;Lee, Yong Seob;Kim, Soon Shik
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.13 no.1
    • /
    • pp.121-133
    • /
    • 2020
  • This study proposes a lesson design framework to design a science and engineering integrated lesson in a meaningful and easy way based on engineering design, which is the core feature of STEM education. The science and engineering integrated lesson design framework is developed based on the analysis of domestic and foreign theoretical and practical research papers and expert discussion on science and engineering integrated education as well as the feedbacks from science teachers. The science and engineering integrated lesson design framework uses engineering design as the main pedagogical method. The framework includes the core elements of the engineering integrated lesson suggested in previous studies and the achievement level of each grade group suggested in NGSS and provides a way for teachers to easily introduce engineering design into science classes. In addition, the framework developed in this study complements the shortcomings of the complicated Korean STEAM education framework. It can also provide specific guidance to in-service teachers as well as pre-service teachers to easily understand and apply engineering design and problem solving processes to science and engineering integrated lessons.

A Study of Developing Graduate Student Team Project-based Learning Program in the Science and Technology Field Applying Metaverse Technology (메타버스를 활용한 이공계 대학원생 팀 프로젝트 기반 교육 프로그램 개발 사례 연구)

  • Jeon, Juhui;Kim, Marie;Kim, Bokyung;Kang, Kyuri
    • Journal of Engineering Education Research
    • /
    • v.26 no.6
    • /
    • pp.19-29
    • /
    • 2023
  • This study aims to develop and apply a metaverse-based instructional design model for the education in science and technology. It analyzed the concept and characteristics of metaverse, existing non-contact education models, and major teaching strategies systematically. Based on the prior researches, an instructional design model using metaverse is developed that presents metaverse-related teaching strategies and design principles for the before-, during-, and after-lesson phases. Then, this model was applied to a project-based learning program, conducted a perception survey on instructors and learners, and revised the metaverse instructional design model based on the results of the survey. In the Metaverse Instructional Design Model, before-lesson phase is a physical and psychological preparation stage for class participation, which includes familiarization with the Metaverse learning environment, formation of expectations for education, and self-directed pre-learning. During the lesson, to effectively deliver the lesson content, it is necessary to build confidence in the learning environment, promote learning participation, provide reference materials, perform team projects and provide feedback, digest learning content, and transfer learning content. The after-lesson phase provides strategies for ongoing interaction between learners and mentors. This study introduces a new instructional design model that utilizes metaverse and shows the potential of metaverse-based education in science and technology. It also has important implications in that it provides practical guidelines for the effective design and implementation of metaverse-based education.

(Design and Implementation of Automated Lesson Planner System for ICT Education) (ICT 활용교육을 위한 온라인 지도안 시스템의 설계 및 구현)

  • 천종필;백장미;한선관;이철환
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.9
    • /
    • pp.1207-1214
    • /
    • 2002
  • This study has developed Web-based, Automated Lesson Planner System for teachers to make out and make use of lesson plans using ICT(Information & Communication Technology). First, web-based lesson planner system has been developed to make teachers possible to make and use lesson plans on the web. Second, the database of electronic lesson planner system has been designed and established according to Korean curriculum and form of teaching-loaming lesson plan using ICT. Third, the system embodied making out a lesson plan easily and operating all ICT materials together. Last, the system was applied to the real elementary school fields and the efficiency and improvements were analyzed. This lesson planner system made database of all ICT materials and lesson plans, so that it can manage and control all lesson plans systematically. Also, the lesson plans and ICT materials are connected together, so the database can be a dynamic content storage. The construction of this system established maximization of share, use and storage of teaching-learning lesson plans. It will be popularize in real education fields and made a contribution to the school informatization.

  • PDF