• Title/Summary/Keyword: left simple

Search Result 467, Processing Time 0.026 seconds

ON NIL-EXTENSIONS OF LEFT STRONGLY SIMPLE po-SEMIGROUPS

  • Zhu, Qing Shun
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.405-416
    • /
    • 2011
  • In this paper, we first introduce the concept of left strongly simple po-semigroups, then we discuss properties and characterizations nil-extensions of left strongly simple po-semigroups and semilattices of leftstrongly simple po-semigroups. Finally, we give some characterizations of the chain of left strongly simple po-semigroups.

MC2 Rings

  • Wei, Jun-Chao
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.651-663
    • /
    • 2008
  • In this paper, we first study some characterizations of left MC2 rings. Next, by introducing left nil-injective modules, we discuss and generalize some well known results for a ring whose simple singular left modules are Y J-injective. Finally, as a byproduct of these results we are able to show that if R is a left MC2 left Goldie ring whose every simple singular left R-module is nil-injective and GJcp-injective, then R is a finite product of simple left Goldie rings.

ON SIMPLE LEFT, RIGHT AND TWO-SIDED IDEALS OF AN ORDERED SEMIGROUP HAVING A KERNEL

  • Changphas, Thawhat
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1217-1227
    • /
    • 2014
  • The intersection of all two-sided ideals of an ordered semigroup, if it is non-empty, is called the kernel of the ordered semigroup. A left ideal L of an ordered semigroup ($S,{\cdot},{\leq}$) having a kernel I is said to be simple if I is properly contained in L and for any left ideal L' of ($S,{\cdot},{\leq}$), I is properly contained in L' and L' is contained in L imply L' = L. The notions of simple right and two-sided ideals are defined similarly. In this paper, the author characterize when an ordered semigroup having a kernel is the class sum of its simple left, right and two-sided ideals. Further, the structure of simple two-sided ideals will be discussed.

ON THE LEFT REGULAR po-Γ-SEMIGROUPS

  • Kwon, Young In;Lee, Sang Keun
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.149-154
    • /
    • 1998
  • We consider the ordered ${\Gamma}$-semigroups in which $x{\gamma}x(x{\in}M,{\gamma}{\in}{\Gamma})$ are left elements. We show that this $po-{\Gamma}$-semigroup is left regular if and only if M is a union of left simple sub-${\Gamma}$-semigroups of M.

  • PDF

ON LEFT REGULAR po-SEMIGROUPS

  • Lee, Sang-Keun;Jung, Jae-Hong
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • The paper refers to ordered semigroups in which $x^2 (x \in S)$ are left ideal elements. We mainly show that this $po$-semigroup is left regular if and only if S is a union of left simple subsemigroups of S.

  • PDF

Some Results on Simple-Direct-Injective Modules

  • Derya Keskin Tutuncu;Rachid Tribak
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.521-537
    • /
    • 2023
  • A module M is called a simple-direct-injective module if, whenever A and B are simple submodules of M with A ≅ B and B is a direct summand of M, then A is a direct summand of M. Some new characterizations of these modules are proved. The structure of simple-direct-injective modules over a commutative Dedekind domain is fully determined. Also, some relevant counterexamples are indicated to show that a left simple-direct-injective ring need not be right simple-direct-injective.

INTUITIONISTIC FUZZY IDEALS IN ORDERED SEMIGROUPS

  • Khan, Asghar;Khan, Madad;Hussain, Saqib
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.311-324
    • /
    • 2010
  • We prove that a regular ordered semigroup S is left simple if and only if every intuitionistic fuzzy left ideal of S is a constant function. We also show that an ordered semigroup S is left (resp. right) regular if and only if for every intuitionistic fuzzy left(resp. right) ideal A = <$\mu_A$, $\gamma_A$> of S we have $\mu_A(a)\;=\;\mu_A(a^2)$, $\gamma_A(a)\;=\;\gamma_A(a^2)$ for every $a\;{\in}\;S$. Further, we characterize some semilattices of ordered semigroups in terms of intuitionistic fuzzy left(resp. right) ideals. In this respect, we prove that an ordered semigroup S is a semilattice of left (resp. right) simple semigroups if and only if for every intuitionistic fuzzy left (resp. right) ideal A = <$\mu_A$, $\gamma_A$> of S we have $\mu_A(a)\;=\;\mu_A(a^2)$, $\gamma_A(a)\;=\;\gamma_A(a^2)$ and $\mu_A(ab)\;=\;\mu_A(ba)$, $\gamma_A(ab)\;=\;\gamma_A(ba)$ for all a, $b\;{\in}\;S$.

On Left SF-Rings and Strongly Regular Rings

  • Subedi, Tikaram;Buhphang, Ardeline Mary
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.861-866
    • /
    • 2016
  • A ring R called left SF if its simple left modules are at. Regular rings are known to be left SF-rings. However, till date it is unknown whether a left SF-ring is necessarily regular. In this paper, we prove the strong regularity of left (right) complement bounded left SF-rings. We also prove the strong regularity of a class of generalized semi-commutative left SF-rings.

Interval-valued Fuzzy Ideals and Bi-ideals of a Semigroup

  • Cheong, Min-Seok;Hur, Kul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.259-266
    • /
    • 2011
  • We apply the concept of interval-valued fuzzy sets to theory of semigroups. We give some properties of interval-valued fuzzy ideals and interval-valued fuzzy bi-ideals, and characterize which is left [right] simple, left [right] duo and a semilattice of left [right] simple semigroups or another type of semigroups in terms of interval-valued fuzzy ideals and intervalvalued fuzzy bi-ideals.

INTUITIONISTIC FUZZY IDEALS AND BI-IDEALS

  • HUR, KUL;KIM, KWANG JIN;SONG, HYEONG KEE
    • Honam Mathematical Journal
    • /
    • v.26 no.3
    • /
    • pp.309-330
    • /
    • 2004
  • In this paper, we apply the concept of intuitionistic fuzzy sets to theory of semigroups. We give some properties of intuitionistic fuzzy ideals and intuitionistic fuzzy bi-ideals, and characterize which is left [right] simple, left [right] duo and a semilattice of left [right] simple semigroups or another type of semigroups in terms of intuitionistic fuzzy ideals and intuitionistic fuzzy bi-ideals.

  • PDF