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ON NIL-EXTENSIONS OF LEFT STRONGLY SIMPLE

po-SEMIGROUPS

Qing Shun Zhu

Abstract. In this paper, we first introduce the concept of left strongly
simple po-semigroups, then we discuss properties and characterizations
nil-extensions of left strongly simple po-semigroups and semilattices of left

strongly simple po-semigroups. Finally, we give some characterizations of
the chain of left strongly simple po-semigroups.

1. Introduction and preliminaries

The ideal extension problem for semigroups is as follows: Given a semigroup
S and a semigroup Q with zero such that S

∩
Q∗ = Ø (where Q∗ = Q \ {0}),

construct all the semigroups V which have an ideal K which is isomorphic
to S and the Rees quotient V/K is isomorphic to Q. For ideal extensions
of semigroups (without order) have been considered by A. H. Clifford in [4]
who gave the first general structure theorem in the case when semigroups is
weakly reductive (Theorem 4.21 of [4]). A detailed exposition of the ideal
extensions of semigroups can be found in [5, 13]. Extensions of weakly reductive
semigroups, strict and pure extensions, retract extensions, dense extensions,
equivalent extensions have been also considered in [13]. Ideal extensions of
ordered semigroups have been studied in [10], and nil-extensions of simple
ordered semigroups in [3]. We are often interested in building more complex
semigroups, lattices, ordered sets, and ordered or topological semigroups out of
some of “simple” structure and this can be sometimes achieved by constructing
the ideal extensions. The aim of this paper is to study the structure of left
strongly simple po-semigroups referring to nil-extension and semilattice of this
type of po-semigroups.

Throughout this paper, Z+ will denote the set of positive integers. As in
[1], a po-semigroup (: ordered semigroup) is an ordered set (S,≤) at the same
time a semigroup such that:

a ≤ b =⇒ xa ≤ xb and ax ≤ bx,∀a, b, x ∈S.
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Definition 1.1. Let S be a po-semigroup and Ø ̸= A ⊆ S. A is called a left
(right) ideal of S if

(1) SA ⊆ A (SA ⊆ A);
(2) If a ∈ A, b ≤ a with b ∈ S, then b ∈ A.
A is called an ideal of S if A is both a left and right ideal of S. S is left

(right) simple if it does not contain proper left (right) ideals. S is simple if S
does not contain proper ideals.

Let S be a po-semigroup. For H ⊆ S, let (H] := {t ∈ S|t ≤ h for some
h ∈ H}. For H = {a}, we write (a] instead of ({a}] (a ∈ S). Let I(a), L(a)
and R(a) denote the ideal, the left ideal and the right ideal of S generated by
an element a of S, respectively. One can easily prove that:

L(a) = (a
∪

Sa],

R(a) = (a
∪

aS],

I(a) = (a
∪

Sa
∪

aS
∪

SaS].

We defined the Green’s relation J :={(x, y)|I(x) = I(y)} and UJ (S) will
denote the union of all J -classes of S which are subsemigroups of S.

An element a of a po-semigroup S is semisimple if a ∈ (SaSaS]. A set of
all semisimple elements of S will be denoted by Semis(S). A semigroup S is
called semisimple if S = Semis(S).

Lemma 1.1. Let S be a po-semigroup. Then
(1) S is left (right) simple if and only if S = (Sa](S = (aS]) for every a ∈ S

(see [6]).
(2) S is simple if and only if S = (SaS] for every a ∈ S (see [6]).
(3) S is semisimple if and only if I(a) = (I2(a)] for every a ∈ S.

Proof. (3) is easy to verify by the definition of semisimple. □

Definition 1.2 ([7, 11]). Let Y be a semilattice. Then Y with the natural
order on Y defined by: for α, β ∈ Y

α ≤ β ⇔ αβ = α

is a po-semigroup. The po-semigroup (Y, ·,≤) is called a complete semilattice. A
po-semigroup S is called a complete semilattice Y of subsemigroups Sα(α ∈ Y )
if S is the semilattice Y of subsemigroups Sα(α ∈ Y ) such that

(∀α, β ∈ Y )(∀a ∈ Sα)(∀b ∈ Sβ)a ≤ b ⇒ α ≤ β.

A congruence determined by the partition {Sα;α ∈ Y } of S is called a com-
plete semilattice congruence on S.

A subsemigroup F of a po-semigroup S is a filter of S if : (1) a, b ∈ S, ab ∈ F
implies a ∈ F and b ∈ F ; (2) a ∈ F, b ∈ S, a ≤ b implies b ∈ F . The filter of S
generated by x(x ∈ S) is denoted by N(x). Let N be an equivalence relation
defined, as in [6], by
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N :={(x, y) ∈ S × S|N(x) = N(y)}.
As in [7, 11], for a po-semigroup S, N is the least complete semilattice con-
gruence on S. If S is intra-regular, then we have N = J and S is a complete
semilattice Y of simple semigroups Sα(α ∈ Y ).

As in [2], a relation τ on a po-semigroup S is defined by:

(a, b) ∈ τ ⇔ (∃x, y ∈ S1)b ≤ xay for every a, b ∈ S.

A po-semigroup S is said to have Putcha’s property if for a, b ∈ S, aτb implies
a2τbm for some m ∈ Z+.

Lemma 1.2 (cf. [2, Theorem 2.7]). Let S be a po-semigroup. Then the fol-
lowing conditions are equivalent:

(1) S is a semilattice of Archimedean po-semigroup.
(2) S has Putcha’s property.
(3) (∀a, b ∈ S)(∃n ∈ Z+)(ab)n ∈ (Sa2S].
(4) N is the greatest semilattice congruence on S such that each of its con-

gruence classes is an Archimedean subsemigroup.

If S is a po-semigroup with zero 0, we will write S = S0. An element a
of S is called nilpotent if there exists n ∈ Z+ such that an = 0. The set of
all nilpotents of S is denoted by Nil(S). A semigroup S is a nil-semigroup if
S = Nil(S). Let K be a proper ideal of a po-semigroup S. Then

ρK = (K ×K)
∪
1S

is a semigroup congruence on S. The quotient semigroup

S/ρK = {K}
∪
{{x}|x ∈ S \K}

is the Rees factor semigroup of S modulo K and is normally written by S/K
rather than S/ρK . We may describe S/K as the result of collapsing K into a
single (zero) element, while the elements of S outside of K retain their identity.
A simple argument shows that S/K with an order “≤K” defined by: for a =
{x}, b = {y}, x, y ∈ S \K,

a ≤K b ⇔ x ≤K y, K ≤K a ⇔ (∃z ∈ K)z ≤ x

is a po-semigroup with zero K.

Definition 1.3. Let K be an ideal of a po-semigroup S. Then (S/K, ·,≤K)
is called the Rees factor semigroup of S modulo K, and S is called an ideal
extension of K by the po-semigroup S/K. An ideal extension S of K is called a
nil-extension of K if S/K is a nil po-semigroup.

By Definition 1.3, we can easily prove the following lemma (see [3]).

Lemma 1.3. Let S be a po-semigroup and K be an ideal of S. Then the
following conditions are equivalent:

(1) S is a nil-extension of K.
(2) (∀a ∈ S)(∃m ∈ Z+)am ∈ K.

Example 1.1. We consider the set S = {a, b, c, d, f}, defined by multiplication
and the order below [8]:
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. a b c d f
a a b c d c
b a b c d a
c a b c d c
d d d d d d
f a b c d c

≤:= {(a, a), (a, d), (b, b), (b, d), (c, a), (c, c), (c, d), (c, f), (d, d), (f, f)}.
For an easy way to check that S is a po-semigroup, we refer to [8]. We give

the covering relation and the figure of S:

≺:= {(a, d), (b, d), (c, a), (c, f)}
•

•

•

••
�
�

@
@
�
�

d

c

a fb

The ideals of S are the sets: {a, b, c, d} and S. Let K = {a, b, c, d}. Since
f2 = c ∈ K, by Lemma 1.3, it is obvious that S is a nil-extension of K.

Definition 1.4 ([14, 12]). An element a of a po-semigroup S is a left (right)
semiregular element if a ≤ xaya (a ≤ ax′ay′) for some x, y, x′, y′ ∈ S.

Equivalent Definition: a ∈ (SaSa] (a ∈ (aSaS]) for every a ∈ S [14].

The set of all left (right) semiregular elements of S will be denoted by
LSReg(S) (RSReg(S)). S is called left (resp. right) semiregular if S=LSReg(S)
(S = RSReg(S)). S is called semiregular if S = LSReg(S)

∩
RSReg(S).

Lemma 1.4 ([14]). Let S be a po-semigroup. Then the following conditions
are equivalent:

(1) S is left semiregular.
(2) (L2] = L for every left ideal L of S.
(3) L(a)

∩
L(b) ⊆ (L(a)L(b)] for every a, b ∈ S.

Definition 1.5. Let S be a po-semigroup, S is called left (right) strongly simple
if S is simple and left (right) semiregular. S is called strongly simple if S is
both left and right strongly simple.

Example 1.2. We consider the ordered semigroup S = {a, b, c, d, e}, defined
by multiplication and the order below [9]:

. a b c d e
a a a c a c
b a a c a c
c a a c a c
d d d e d e
e d d e d e
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≤:= {(a, a), (a, b), (a, c), (a, d), (a, e), (b, b), (b, c), (b, d),
(b, e), (c, c), (c, e), (d, d), (d, e), (e, e)}.

We give the covering relation and the figure of S:

≺:= {(a, b), (b, c), (b, d), (c, e), (d, e)},
•

•

•

•

• @
@

�
�

@
@
�
�

e

b

c d

a
For any x ∈ S, it is enough to prove that (SxS] = S. Hence, S is simple. For

an easy way to check that S is left semiregular and right semiregular. Thus S is
both left and right strongly simple. Hence S is a strongly simple po-semigroup.

Now, we generalize the concepts of (intra-, left, right) π-regular semigroups
without order to po-semigroups. Let S be a po-semigroup. The set of all
regular (left regular, right regular, intra-regular) elements of S is denoted by
Reg(S) (LReg(S), RReg(S), Intra(S)).

Definition 1.6. A po-semigroup S is called π-regular (left π-regular, right
π-regular, intra-π-regular, left π-semiregular) if for every a ∈ T there exists
n ∈ Z+ such that an ∈ Reg(S) (LReg(S), RReg(S), Intra(S), LSReg(S)).

Definition 1.7. A po-semigroup S is called Archimedean, if for any a, b ∈ S
there exists n ∈ Z+ such that an ∈ (SbS].

2. Nil-extensions of left strongly simple po-semigroups

Now we are ready to prove the main results of this paper. First, we introduce
a lemma which will be used frequently in this paper.

Lemma 2.1. Let po-semigroup S be a complete semilattice Y of subsemigroups
Sα(α ∈ Y ). Then

(1) the following conditions hold:

LSReg(S) =
∪
α∈Y

LSReg(Sα), Semis(S) =
∪
α∈Y

Semis(Sα),

Intra(S) =
∪
α∈Y

Intra(Sα), LReg(S) =
∪
α∈Y

LReg(Sα).

(2) S is left semiregular (semisimple, intra-regular, left regular) if and only
if Sα is left semiregular (semisimple, intra-regular, left regular) for all α ∈ Y .

(3) S is left π-semiregular (π-semisimple, intra π-regular, left π-regular)
if and only if Sα is left π-semiregular (π-semisimple, intra π-regular, left π-
regular) for all α ∈ Y .
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Proof. (1) It is obvious that LSReg(S)⊇
∪

α∈Y LSReg(Sα). Let a∈LSReg(S).
Then there exists α ∈ Y and u ∈ Sβ , v ∈ Sγ such that a ∈ Sα and a ≤
uava. Since Y is a complete semilattice of S, we have α ≤ βαγα. From
βαγα ≤ βαγ ≤ βα ≤ α, which implies α = αβγ. Since a ≤ uava ≤
u(uava)v(uava) = (u2av)a(vuav)a, in which u2av, vuav ∈ Sβαγ = Sα, we have
that a ∈ LSReg(Sα). Thus it implies that LSReg(Sα) ⊆

∪
α∈Y LSReg(Sα).

Hence, the first equality in (1) holds. Similar arguments can show that the
other equalities in (1) hold.

Both (2) and (3) are immediate consequences of (1). □

Theorem 2.1. The following conditions on a po-semigroup S are equivalent:
(1) S is left strongly simple.
(2) (∀a, b ∈ S)a ∈ (SbSa].
(3) Every left ideal of S is a simple po-semigroup.
(4) S is simple and (L2] = L for every left ideal L of S.
(5) S is simple and every left ideal of S is an intra-regular po-semigroup.

Proof. (1) ⇒ (2) and (2) ⇒ (3) It follows immediately from Lemma 1.1 and
the definition of left strongly simple.

(3) ⇒ (4) Since S is a left ideal of S itself. By hypothesis, S is simple.
Let L be a left ideal of S. It is obvious that (L2] ⊆ L. Let a ∈ L. Then
L(a) = (L(a)aL(a)] ⊆ (L2(a)] ⊆ (L2]. It implies that L ⊆ (L2]. Therefore, we
have (L2] = L.

(4) ⇒ (5) Let L be a left ideal of S and a ∈ L. By hypothesis, we have
a3 ∈ L and S = (Sa3S]. Thus

a ∈ L = (L2] ⊆ (SL] ⊆ ((Sa3S]L] ⊆ (SLa2L] ⊆ (La2L]

which shows that L is an intra-regular po-semigroup.
(5) ⇒ (1) Let a ∈ S, by hypothesis, we have a ∈ L(a) = (L(a)a2L(a)] ⊆

((a
∪
Sa]a2(a

∪
Sa]] ⊆ (SaSa]. Thus, S is left semiregular. □

Theorem 2.2. The following conditions on a po-semigroup S are equivalent:
(1) S is a semilattice of left strongly simple po-semigroup.
(2) (∀a ∈ S)a ∈ (SanSa] for every n ∈ Z+.
(3) (∀a ∈ S)a ∈ (Sa2Sa].
(4) Every left ideal of S is an intra-regular subsemigroup of S.
(5) Every left ideal of S is a semisimple subsemigroup of S.

Proof. (1) ⇒ (2) Suppose S is a semilattice of Y subsemigroups Sα(α ∈ Y )
which are left strongly simple. Let a ∈ Sα for some α ∈ Y . Then an ∈ Sα

for every n ∈ Z+. Since Sα is left strongly simple, by Theorem 2.1, we have
a ∈ (Sαa

nSαa] ⊆ (SanSa].
(2) ⇒ (3) It is obvious.
(3) ⇒ (4) Let L be a left ideal of S and a ∈ L. By hypothesis, we have

a ∈ (Sa2Sa] ⊆ (S(Sa4Sa2]Sa] ⊆ (Sa4Sa2Sa] ⊆ (SLa2SL] ⊆ (La2L].
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Thus L is an intra-regular subsemigroup of S.
(4) ⇒ (5) In view of the hypothesis, a simple argument shows that this is

evident.
(5) ⇒ (1) Let a ∈ S. In view of the hypothesis, we have a∈(L(a)aL(a)aL(a)]

⊆ (Sa2Sa]. Thus S is an intra-regular and left semiregular. It implies S is a
complete semilattice Y of simple semigroup Sα(α ∈ Y ). By Lemma 2.1, Sα is
left semiregular, so Sα is left strongly simple. □

The intersection of all ideals of a po-semigroup S, if nonempty, is called
the kernel of S and denoted by K(S). A po-semigroup S is called completely
regular if S is regular, left regular, right regular po-semigroup [15]. In [15], we
have shown that S is completely regular if and only if ∀a ∈ S, a ∈ (a2Sa2],
equivalently, S is a union of disjoint B-simple subsemigroups of S.

Lemma 2.2 ([3]). Let S be an Archimedean po-semigroup. If Intra(S) ̸= Ø,
then

(1) S has a kernel K(S) such that

∀a ∈ Intra(S), K(S) = (SaS], Intra(S) ⊆ K(S).

(2) S is a nil-extension of simple po-semigroup K(S).

Lemma 2.3 ([16]). Let S be a po-semigroup. Then kernel K(S) of S is a
completely regular simple subsemigroup.

Theorem 2.3. The following conditions on a po-semigroup S are equivalent:
(1) S is a nil-extension of a left strongly simple po-semigroup.
(2) (∀a, b ∈ S)(∃n ∈ Z+)an ∈ (SbmSan] for every m ∈ Z+.
(3) (∀a, b ∈ S)(∃n ∈ Z+)an ∈ (SbSan].
(4) S is Archimedean and left π-semiregular.

Proof. (1) ⇒ (2) Let S be a nil-extension of a left strongly simple po-semigroup
K. Let a, b ∈ S. Then an ∈ K for some n ∈ Z+. Since K is an ideal of S, we
have anbm ∈ KS ⊆ K for every m ∈ Z+. But K is left strongly simple, by
Theorem2.1, for an, anbm, we have an ∈ (SanbmSan] ⊆ (SbmSan].

(2) ⇒ (3) ⇒ (4) The implcations follow immediately.
(4) ⇒ (1) Suppose S is Archimedean and left π-semiregular. Let a ∈ S.

Then there exist x, y ∈ S and n ∈ Z+ such that an ≤ xanyan ≤ (xany)man for
every m ∈ Z+. Since S is Archimedean, for xany and a2n there exist k ∈ Z+

and u, v ∈ S such that (xany)k ≤ ua2nv. Now

an ≤ xanyan ≤ (xany)kan ≤ ua2nvan = ua2n(van) ⇒ an ∈ (Sa2nS]

which shows that an ∈ Intra(S). Hence Intra(S) ̸= Ø. By Lemma 2.2, we
conclude that S is a nil-extension of simple po-semigroupK(S). By Lemma 2.3,
K(S) is a completely regular simple subsemigroup. A simple argument shows
that K(S) is left semiregular. Hence S is a nil-extension of a left strongly
simple po-semigroup. □
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Lemma 2.4 ([3]). Let S be a po-semigroup. Then S is Archimedean and
intra-regular if and only if S is simple.

Theorem 2.4. The following conditions on a po-semigroup S are equivalent:
(1) S is a semilattice of nil-extensions of left strongly simple po-semigroups.
(2) (∀a, b ∈ S)(∃n ∈ Z+)(ab)n ∈ (SamS(ab)n] for every m ∈ Z+.
(3) (∀a, b ∈ S)(∃n ∈ Z+)(ab)n ∈ (Sa2S(ab)n].
(4) S is intra π-regular and LSReg(S) = Intra(S) = Semis(S) = UJ (S).

Proof. (1) ⇒ (2) Suppose S is a semilattice Y of subsemigroups Sα(α ∈ Y )
which are nil-extensions of left strongly simple po-semigroup. Let a ∈ Sα, b ∈
Sβ for some α, β ∈ Y . Then ab ∈ Sαβ , a

mb ∈ Sαβ for every m ∈ Z+, so that
there exists n ∈ Z+ such that

(ab)n ∈ (Sαβa
mbSαβ(ab)

n] ⊆ (SamS(ab)n]

by Theorem 2.3.
(2) ⇒ (3) It is obvious.
(3) ⇒ (4) Let a ∈ S. By hypothesis, there exist x, y ∈ S and n ∈ Z+ such

that a2n ≤ xa2ya2n ≤ x(a2yx)ma2ya2n for every m ∈ Z+. But for a2, yx there
exist u1, v1 ∈ S and k1 ∈ Z+ such that (a2yx)k1 ≤ u1a

4v1(a
2yx)k1 . So we have

a2n ≤ x(a2yx)k1a2ya2n ≤ xu1a
4v1(a

2yx)k1a2ya2n ∈ (Sa4Sa2n].

Hence there exist u2, v2 ∈ S such that a2n ≤ u2a
4v2a

2n ≤ u2(a
4v2u2)

k2a4v2a
2n

for every k2 ∈ Z+. Continuing this way, then there exist u2n, v2n ∈ S such
that a2n ≤ u2na

4nv2na
2n ∈ (Sa4nSa2n], which shows that S is intra π-regular

and left π-semiregular.
Let a ∈ Semis(S). Then (a)J is a subsemigroup of S. In fact: Let b, c ∈

(a)J , then I(a) = I(b) = I(c). A simple argument shows that I(bc) ⊆ I(a).
Conversely, since a ∈ Semis(S), then a ∈ (SaSaS] ⊆ (SaSaSaSaSaS] ⊆
(I5(b)] ⊆ (SbS]. Similarly, a ∈ (ScS]. Thus we have a ∈ (SaSaS] ⊆
(S(ScS]S(SbS]S] ⊆ (ScSbS]. Then there exist x, y, z ∈ S such that a ≤ xcybz.
Since a ∈ Semis(S), there exist u, v, d ∈ S such that for every n ∈ Z+

a ≤ uavad ≤ un+1a(vad)n+1 ≤ un+1a(vxcybzd)n+1

= un+1avx(cybzdvx)ncybzd.

But for cyb, zdvx, by hypothesis, there exist p, q ∈ S and m ∈ Z+ such that

(cybzdvx)m ≤ p(cyb)2q(cybzdvx)m = (pcy)bc(ybq)(cybzdvx)m

∈ SI(bc)S ⊆ I(bc).

Hence I(a) ⊆ I(bc), so I(a) = I(bc), it implies bc ∈ (a)J . Thus (a)J is a
subsemigroup of S and Semis(S) ⊆ UJ (S) is obvious by a ∈ (a)J ∈ UJ (S).

On the other hand, let a ∈ UJ (S), then there exists b ∈ S such that a ∈
(b)J ∈ UJ (S). Since (b)J is a subsemigroup of S, then a4 ∈ (b)J . Hence
I(a4) = I(b) = I(a), so we have a ∈ I(a4) ⊆ (Sa2S] ⊆ (SaSaS], i.e., a ∈
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Semis(S) and a ∈ Intra(S). Thus UJ (S) ⊆ Semis(S) and UJ (S) ⊆ Intra(S),
so that Semis(S) = UJ (S). By Semis(S) = UJ (S), a simple argument shows
that LSReg(S) ⊆ Semis(S)= UJ (S) and Intra(S) ⊆ Semis(S)=UJ (S). Thus
Intra(S)=UJ (S).

By hypothesis, it is obvious that S has Putcha’s property. In view of
Lemma 1.2, N is the greatest semilattice congruence on S such that (x)N
is an Archimedean subsemigroup for every x ∈ S. But N is the least com-
plete semilattice congruence on S. Since S is left π-semiregular and intra
π-regular, by Lemma 2.1, (x)N is left π-semiregular and intra π-regular. From
this it follows by Theorem 2.3 that (x)N is a nil-extensions of left strongly
simple po-semigroup Kx for every x ∈ S. Let c ∈ Intra(S). Then c ∈
Intra((c)N ), i.e., there exist u, v ∈ (c)N such that c ≤ uc2v ≤ ukc(cv)k for
every k ∈ Z+. For u, cv there exists n ∈ Z+ such that un, (cv)n ∈ Kc. Hence
c ≤ unc(cv)n ∈ KccKc ⊆ Kc ⊆ LSReg(S). Thus, Intra(S) ⊆ LSReg(S). We
have Intra(S) = LSReg(S).

(4) ⇒ (1) Let a, b ∈ S. By S is intra π-regular, then there exist u, v ∈ S and
n ∈ Z+ such that (ab)n ≤ u(ab)2nv ∈ (S(ba)n+1S] and (ba)n+1 ∈ (S(ab)nS],
which implies that (ab)n, (ba)n+1 ∈ ((ab)n)J . Since (ab)n ∈ Intra(S) =
Semis(S), the process is similar to the proof of (3) ⇒ (4), we have ((ab)n)J is
a subsemigroup of S. Then (ba)n+1(ab)n ∈ ((ab)n)J . Now

(ab)n ∈ I((ba)n+1(ab)n) = I((ba)nba2b(ab)n−1) ⊆ (Sa2S].

Thus S has Putcha’s property by Lemma 1.2. By Lemma 1.2, N is the
greatest semilattice congruence on S and the N -class (a)N of S containing
a is an Archimedean subsemigroup for every a ∈ S. Since N is the least
complete semilattice congruence on S, and S is intra π-regular, by Lemma
2.1, (a)N is intra π-regular. Let b ∈ (a)N , then there exists m ∈ Z+ such
that bm ∈ Intra((a)N ) ⊆ Intra(S) = LSReg(S). By Lemma 2.1, then
bm ∈ LSReg((bm)N ). Since (a)N is a subsemigroup, we have bm ∈ (a)N ,
thus (bm)N = (a)N , so we get (a)N is a left π-semiregular po-semigroup. Since
(a)N is Archimedean left π-semiregular po-semigroup. By Theorem 2.3, (a)N
is nil-extensions of left strongly simple po-semigroups. □

3. Chain of left strongly simple po-semigroups

Further, we will consider chains of left strongly simple po-semigroups.
For a po-semigroup S, σ a semilattice congruence on S, we denote by “ ⪯ ”

the order on the semigroup S/σ = {(x)σ|x ∈ S} defined by:

(x)σ ⪯ (y)σ ⇔ (x)σ = (xy)σ

(S/σ, ·,⪯) is a po-semigroup.

Definition 3.1. Let S be a po-semigroup. S is called a chain of left strongly
simple po-semigroups if there exists a semilattice congruence σ on S such that
(x)σ is a left strongly simple po-subsemigroup of S for every x ∈ S and (S/σ,⪯)
is a chain.
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Theorem 3.1. Let S be a po-semigroup, C(S) the set of ideals of S. The
following conditions are equivalent:

(1) S is a chain of left strongly simple semigroups.
(2) (∀a, b ∈ S)a ∈ (SabSa] or b ∈ (SabSb].
(3) (∀a ∈ S)a ∈ (Sa2Sa] and every ideal of S is prime.
(4) (∀a ∈ S)a ∈ (Sa2Sa] and (C(S),⊆) is a chain.

Proof. (1) ⇒ (2) Let σ be a semilattice congruence of S such that (x)σ is a left
strongly simple semigroup of S for every x ∈ S and (S/σ,⪯) is a chain. Let
a, b ∈ S. For (a)σ, (b)σ, we have (a)σ ⪯ (b)σ or (b)σ ⪯ (a)σ. If (a)σ ⪯ (b)σ,
then a, ab ∈ (a)σ, and by Theorem 2.1, we have a ∈ ((a)σab(a)σa] ⊆ (SabSa].
If (b)σ ⪯ (a)σ, similar arguments can show that b ∈ (SabSb].

(2) ⇒ (3) It is obvious.
(3) ⇒ (4) Let C(S) be the set of ideals of S. Let A,B ∈ C(S) such that

A ̸⊆ B. We prove that B ⊆ A. Let a ∈ A, a ̸∈ B and b ∈ B. Then
ab ∈ AB ⊆ A,B. In view of hypothesis, we have ab ∈ (S(ab)2Sab] ⊆ (SabS].
Since (SabS] is an ideal of S, we have a ∈ (SabS] or b ∈ (SabS]. If a ∈ (SabS],
then a ∈ (SabS] ⊆ (SBS] ⊆ (B] = B, impossible. Thus b ∈ (SabS] ⊆ (SAS] ⊆
(A] = A.

(4) ⇒ (1) In view of the hypothesis, it is clear that S is intra-regular. By
[13, Theorem 2], there exists a complete semilattice congruence σ of S such
that (x)σ is a simple po-semigroup of S for every x ∈ S and (S/σ,⪯) is a chain.
Let a ∈ (x)σ. By hypothesis, we have a ∈ (Sa2Sa]. Assume that u, v ∈ S
such that a ≤ ua2va. Then, taking into account the fact that σ is complete,
we have (a, aua2va) ∈ σ. Since σ is a semilattice congruence on S, we have
(aua2va, a2ua2v) ∈ σ. Since (a2, a) ∈ σ, we have (aua2va, aua2v) ∈ σ. Then,
since (u, u2) ∈ σ, we have (aua2v, au2a2v) ∈ σ. Then, since (au2a2v, uaua2v) ∈
σ, we have (aua2va, uaua2v) ∈ σ. Therefore, we get that (a, uaua2v) ∈ σ and
uaua2v ∈ (a)σ. Analogously, vaua

2v ∈ (a)σ. Now

a ≤ ua2va ≤ ua(ua2va)va ≤ (uaua2v)ava(ua2va) = (uaua2v)a(vaua2v)a

in which uaua2v, vaua2v ∈ (a)σ, we shows that (x)σ is a left semiregular sub-
semigroup. Thus, (x)σ is a left strongly simple subsemigroup. □

Theorem 3.2. The following conditions on a po-semigroup S are equivalent:
(1) S is a chain of nil-extension of left strongly simple semigroups.
(2) (∀a, b ∈ S)(∃n ∈ Z+)an ∈ (SambSan] or bn ∈ (SabmSbn] for every

m ∈ Z+.
(3) (∀a, b ∈ S)(∃n ∈ Z+)an ∈ (SabSan] or bn ∈ (SabSbn].
(4) S is left π-semiregular and LSReg(S) is a chain of left strongly simple

po-semigroups.

Proof. (1) ⇒ (2) Let σ be a semilattice congruence of S such that (x)σ is a
nil-extension of left strongly simple semigroup Kx of S for every x ∈ S and
(S/σ,⪯) is a chain. Let a, b ∈ S. For (a)σ, (b)σ, we have (a)σ ⪯ (b)σ or
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(b)σ ⪯ (a)σ. If (a)σ ⪯ (b)σ, then a, ab ∈ (a)σ, so for every m ∈ Z+, we have
a, amb ∈ (a)σ. By Theorem 3.1, then an ∈ ((a)σa

mb(a)σa
n] ⊆ (SambSan]. If

(b)σ ⪯ (a)σ, in a similar way, we obtain bn ∈ (SabmSbn] for every m ∈ Z+.
(2) ⇒ (3) It is obvious.
(3) ⇒ (4) It is clear that S is an Archimedean po-semigroup and an ∈

(Sa2San] for every a ∈ S. Then there exist x, y ∈ S such that an ≤ xa2yan ≤
(xa2y)kan for every k ∈ Z+. For xa2y, an there exist u, v ∈ S and m ∈ Z+

such that (xa2y)m ≤ uanv. Now, we have an ≤ (xa2y)man ≤ uanvan, which
shows that an ∈ LSReg(S). Hence S is left π-semiregular.

Let a, b ∈ LSReg(S). Then there exist u, v ∈ S such that a ≤ uava ≤
(uav)ma for every m ∈ Z+. Since S is Archimedean, for uav, ab there exist
x, y ∈ S and k ∈ Z+ such that (uav)k ≤ xaby. Now we have ab ≤ (uav)kab ≤
xabyab, so ab ∈ LSReg(S), i.e., LSReg(S) is a subsemigroup.

On the other hand, LSReg(S) is simple. In fact: Let a ∈ LSReg(S),
then there exist u, v ∈ S such that a ≤ uava ≤ una(va)n for every n ∈
Z+. Since S is left π-semiregular, for u, va there exists k ∈ Z+ such that
uk, (va)k ∈ LSReg(S). Hence a ∈ (LSReg(S)aLSReg(S)] ⊆ LSReg(S), so
(LSReg(S)aLSReg(S)] = LSReg(S).

Let K = LSReg(S), a, b ∈ K. For a, ab ∈ K, then K = (KabK]. Thus there
exist x, y, u, v ∈ K such that a ≤ xaya ≤ xuabvya ∈ (KabKa]. For b, ab ∈ K,
in a similar way, we have b ∈ (KabKb]. By Theorem 3.1, K is a chain of left
strongly simple po-semigroups.

(4) ⇒ (1) Let a, b ∈ S. Since S is left π-semiregular, then there exist
n,m ∈ Z+ such that (ab)n, (ba)m ∈ LSReg(S). For (ba)m, (ab)n, by Theorem
3.1, we have

(ba)m ∈ (LSReg(S)(ba)m(ab)nLSReg(S)(ba)m] ⊆ (Sa2S]

or

(ab)n ∈ (LSReg(S)(ba)m(ab)nLSReg(S)(ab)n] ⊆ (Sa2S].

Thus (ab)mn ∈ (S(ab)mnS(ab)mn] ⊆ (Sa2S(ab)mn] ⊆ (Sa2S]. From this it
follows by Lemma 1.2 that S has Putcha’s property. In view of Lemma 1.2, N
is the greatest semilattice congruence on S such that (x)N is an Archimedean
subsemigroup for every x ∈ S. SinceN is the least complete semilattice congru-
ence on S, and S is left π-semiregular, by Lemma 2.1, (x)N is left π-semiregular.
From this it follows by Theorem 2.3 that (x)N is a nil-extensions of left strongly
simple po-semigroups.

Moreover, Let (a)σ, (b)σ ∈ S/N . Since S is left π-semiregular, then there
exist n,m ∈ Z+ such that an, bm ∈ LSReg(S). For an, bm, by Theorem 3.1,
we have

an ∈ (LSReg(S)anbmLSReg(S)an] ⊆ (SabS] ⊆ I(ab)

or

bm ∈ (LSReg(S)anbmLSReg(S)bm] ⊆ (SabS] ⊆ I(ab).
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If an ∈ (SabS], then there exist u, v ∈ S such that an ≤ uabv. Then N(a) ∋
an ≤ uabv, so we have uabv ∈ N(a), it is implies ab ∈ N(a), we get N(ab) ⊆
N(a). If bm ∈ (SabS], in a similar way, we have N(ab) ⊆ N(b). On the
other hand, ab ∈ N(ab), we have a, b ∈ N(ab). Therefore, N(a) ⊆ N(ab)
and N(b) ⊆ N(ab). Thus, we have N(ab) = N(a) or N(ab) = N(b) i.e.,
(a)N = (ab)N or (b)N = (ab)N . We have (a)N ⪯ (b)N or (b)N ⪯ (a)N . □
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