• Title/Summary/Keyword: least squares problem

Search Result 347, Processing Time 0.029 seconds

Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.359-367
    • /
    • 2017
  • In this work, transient heat transfer analysis of functionally graded (FG) carbon nanotube reinforced nanocomposite (CNTRC) cylinders with various essential and natural boundary conditions is investigated by a mesh-free method. The cylinders are subjected to thermal flux, convection environments and constant temperature faces. The material properties of the nanocomposite are estimated by an extended micro mechanical model in volume fraction form. The distribution of carbon nanotube (CNT) has a linear variation along the radial direction of axisymmetric cylinder. In the mesh-free analysis, moving least squares shape functions are used for approximation of temperature field in the weak form of heat transform equation and the transformation method is used for the imposition of essential boundary conditions. Newmark method is applied for solution time depended problem. The effects of CNT distribution pattern and volume fraction, cylinder thickness and boundary conditions are investigated on the transient temperature field of the nanocomposite cylinders.

An Isometric Shape Interpolation Method on Mesh Models (메쉬 모델에 대한 아이소메트릭 형상 보간 방법)

  • Baek, Seung-Yeob;Lee, Kunwoo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.119-128
    • /
    • 2014
  • Computing the natural-looking interpolation of different shapes is a fundamental problem of computer graphics. It is proved by some researchers that such an interpolation can be achieved by pursuing the isometry. In this paper, a novel coordinate system that is invariant under isometries is defined. The coordinate system can easily be converted from the global vertex coordinates. Furthermore, the global coordinates can be efficiently recovered from the new coordinates by simply solving two sparse least-squares problems. Since the proposed coordinate system is invariant under isometries, then transformations such as global rigid trans-formations, articulated posture deformations, or any other isometric deformations, do not change the coordinate values. Therefore, shape interpolation can be done in this framework without being affected by the distortions caused by the isometry.

AN APPROACH TO WALSH FUNCTIONS FOR OPTIMAL CONTROL OF DETERMINISTIC SYSTEMS (확정계의 최적제어를 위한 WALSH함수 접근)

  • Ahn, Doo-Soo;Bae, Jong-Il;Lee, Myung-Kyu;Kim, Jong-Boo;Lee, Seung
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.116-120
    • /
    • 1989
  • The optimal control problem of linear Lumped Parameter Systems (LPS) and Distributed Parameter Systems (DPS) is studied by employing the technique of Walsh functions (WF). By the using the elegant operational properties of WF, a direct computational algorithm for evaluating the optimal control and trajectory of LPS and DPS is developed. Without the need of solving the traditional matrix Riccati equation, the WF approach in shown very simple in form and convenient for use of a computer. The approximation is in the sense of least squares employing WF as the basis and the results are in the piecewise constant and discrete form.

  • PDF

ADAPTIVE CHANDRASEKHAR FILLTER FOR LINEAR DISCRETE-TIME STATIONALY STOCHASTIC SYSTEMS

  • Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.1041-1044
    • /
    • 1988
  • This paper considers the design problem of adaptive filters based an the state-space models for linear discrete-time stationary stochastic signal processes. The adaptive state estimator consists of both the predictor and the sequential prediction error estimator. The discrete Chandrasakhar filter developed by author is employed as the predictor and the nonlinear least-squares estimator is used as the sequential prediction error estimator. Two models are presented for calculating the parameter sensitivity functions in the adaptive filter. One is the exact model called the linear innovations model and the other is the simplified model obtained by neglecting the sensitivities of the Chandrasekhar X and Y functions with respect to the unknown parameters in the exact model.

  • PDF

Computation of dynamic stiffness and flexibility for arbitrarily shaped two-dimensional membranes

  • Chen, J.T.;Chung, I.L.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.437-453
    • /
    • 2002
  • In this paper, dynamic stiffness and flexibility for circular membranes are analytically derived using an efficient mixed-part dual boundary element method (BEM). We employ three approaches, the complex-valued BEM, the real-part and imaginary-part BEM, to determine the dynamic stiffness and flexibility. In the analytical formulation, the continuous system for a circular membrane is transformed into a discrete system with a circulant matrix. Based on the properties of the circulant, the analytical solutions for the dynamic stiffness and flexibility are derived. In deriving the stiffness and flexibility, the spurious resonance is cancelled out. Numerical aspects are discussed and emphasized. The problem of numerical instability due to division by zero is avoided by choosing additional constraints from the information of real and imaginary parts in the dual formulation. For the overdetermined system, the least squares method is considered to determine the dynamic stiffness and flexibility. A general purpose program has been developed to test several examples including circular and square cases.

Non-iterative Global Mesh Smoothing with Feature Preservation

  • Ji, Zhongping;Liu, Ligang;Wang, Guojin
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.89-97
    • /
    • 2006
  • This paper presents a novel approach for non-iterative surface smoothing with feature preservation on arbitrary meshes. Laplacian operator is performed in a global way over the mesh. The surface smoothing is formulated as a quadratic optimization problem, which is easily solved by a sparse linear system. The cost function to be optimized penalizes deviations from the global Laplacian operator while maintaining the overall shape of the original mesh. The features of the original mesh can be preserved by adding feature constraints and barycenter constraints in the system. Our approach is simple and fast, and does not cause surface shrinkage and distortion. Many experimental results are presented to show the applicability and flexibility of the approach.

A model-based fault diagnosis in uncertain systems

  • Kwon, Oh-Kyu;Sung, Yul-Wan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1210-1215
    • /
    • 1990
  • This paper deals with the fault diagnosis problem in uncertain linear systems having undermodelling, linearization errors and noise inputs. The new approach proposed in this paper uses an appropriate test variable and the difference between system parameters which are estimated by the least squares method to locate the fault. The singular value decomposion is used to decouple the correlation between the estimated system parameters and to observe the trend of parameter changes. Some simulations applied to aircraft ergines show good allocation of the fault even though the system model has significant uncertainties. The feature of the approach is to diagnose the uncertain system through simple parameter operations and not to need complex calculations in the diagnosis procedure as compared with other methods.

  • PDF

A WEIGHTED GLOBAL GENERALIZED CROSS VALIDATION FOR GL-CGLS REGULARIZATION

  • Chung, Seiyoung;Kwon, SunJoo;Oh, SeYoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.59-71
    • /
    • 2016
  • To obtain more accurate approximation of the true images in the deblurring problems, the weighted global generalized cross validation(GCV) function to the inverse problem with multiple right-hand sides is suggested as an efficient way to determine the regularization parameter. We analyze the experimental results for many test problems and was able to obtain the globally useful range of the weight when the preconditioned global conjugate gradient linear least squares(Gl-CGLS) method with the weighted global GCV function is applied.

On the Conditional Tolerance Probability in Time Series Models

  • Lee, Sang-Yeol
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.3
    • /
    • pp.407-416
    • /
    • 1997
  • Suppose that { $X_{i}$ } is a stationary AR(1) process and { $Y_{j}$ } is an ARX process with { $X_{i}$ } as exogeneous variables. Let $Y_{j}$ $^{*}$ be the stochastic process which is the sum of $Y_{j}$ and a nonstochastic trend. In this paper we consider the problem of estimating the conditional probability that $Y_{{n+1}}$$^{*}$ is bigger than $X_{{n+1}}$, given $X_{1}$, $Y_{1}$$^{*}$,..., $X_{n}$ , $Y_{n}$ $^{*}$. As an estimator for the tolerance probability, an Mann-Whitney statistic based on least squares residuars is suggested. It is shown that the deviations between the estimator and true probability are stochatically bounded with $n^{{-1}$2}/ order. The result may be applied to the stress-strength reliability theory when the stress and strength variables violate the classical iid assumption.umption.n.

  • PDF

Crack Identification Using Neuro-Fuzzy-Evolutionary Technique

  • Shim, Mun-Bo;Suh, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.454-467
    • /
    • 2002
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. Toidentifythelocation and depth of a crack in a structure, a method is presented in this paper which uses neuro-fuzzy-evolutionary technique, that is, Adaptive-Network-based Fuzzy Inference System (ANFIS) solved via hybrid learning algorithm (the back-propagation gradient descent and the least-squares method) and Continuous Evolutionary Algorithms (CEAs) solving sir ale objective optimization problems with a continuous function and continuous search space efficiently are unified. With this ANFIS and CEAs, it is possible to formulate the inverse problem. ANFIS is used to obtain the input(the location and depth of a crack) - output(the structural Eigenfrequencies) relation of the structural system. CEAs are used to identify the crack location and depth by minimizing the difference from the measured frequencies. We have tried this new idea on beam structures and the results are promising.