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A WEIGHTED GLOBAL GENERALIZED CROSS

VALIDATION FOR GL-CGLS REGULARIZATION

Seiyoung Chung*, SunJoo Kwon**, and SeYoung Oh***

Abstract. To obtain more accurate approximation of the true im-
ages in the deblurring problems, the weighted global generalized
cross validation(GCV) function to the inverse problem with multi-
ple right-hand sides is suggested as an efficient way to determine
the regularization parameter. We analyze the experimental results
for many test problems and was able to obtain the globally use-
ful range of the weight when the preconditioned global conjugate
gradient linear least squares(Gl-CGLS) method with the weighted
global GCV function is applied.

1. Introduction

The large-scale inverse problems with multiple right-hand sides

HX = B

arise from the column stacking of each small blocks obtained by par-
titioning the blurred and noisy image in the image deblurring and re-
construction, where H ∈ RN×N is an imaging system and B ∈ RN×s

(N ≫ s) is a collection of noisy images. The multiple right-hand sides
B of the system is contaminated by the noise E , B = B∗ + E , where
the noise-free images of the object B∗. The noise E accounts for both
the error measurements and the process involved in the construction of
the discrete model describing the underlying continuous phenomenon.
Typically H is a large full rank matrix, having singular values which ac-
cumulate at the origin and gradually decay to zero, so that it is difficult
to determine its numerical rank. This ill-posed nature of the problem
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may give rise to significant errors in computing approximations of the
true image solution.

Regularization methods can be used to deal with a severely ill-con-
ditioning of the matrix H and the presences of noises. Applying the
regularization method to deblurring problems, the illustrating general
space-invariant imaging systems are often modeled as in the following
equivalent minimization problem:

(1.1) min
X

(∥HX −B∥2F + λ2 ∥X∥2F )

([2, 11, 12]). The positive regularization parameter λ controls the smooth-
ness of the regularized solution and an appropriate value of this param-
eter λ is not known a priori. The regularization parameter λ plays a
crucial role in the quality of the solution and thus a computationally
efficient and reliable estimate of the regularization parameter is needed
in many regularization methods.

In [11], we applied the preconditioned global conjugate gradient lin-
ear least squares (Gl-CGLS) method to image deblurring problems (1.1)
and obtained significant improvements in execution times. But for some
severe ill-posed problems the iterative method without the appropri-
ate regularization parameters revealed the semiconvergence behaviors
in later iterations. In [12], we suggested an efficient way in adapting
Gl-CGLS to determine the better regularization parameter λ using the
global generalized cross validation(GCV) technique and obtained bet-
ter reconstruction images by 1.2 ∼ 38.7% less relative accuracies than
Gl-CGLS method without using the global generalized cross valida-
tion(GCV) technique.

To determine the regularization parameter λ for 2-norm based model
problems in the case where the number of column stacks s = 1 in (1.1),
Morozov’s discrepancy principle, L-curve criterion, generalized cross val-
idation, and new variants of these methods are suggested in [3, 4, 5, 13].
Especially the GCV method is prominent for the selection of the crucial
regularization parameters since GCV has good asymptotic properties for
large number of noisy data. For certain classes of problems, however, the
method may exhibit the poor performances caused by the suboptimal
parameter determining processes.

Chung and et al in [1] used a weighted GCV(W-GCV) function in
Lanczos-hybrid methods to regularize large scale ill-posed problems and
had more effective results than the standard GCV which has a strong
tendency to over-estimate the regularization parameter. They used a
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different range of weights in the W-GCV method to avoid over and under
smoothing difficulties when using GCV in Lanczos-hybrid methods.

Our study adapts the weighted global GCV function in Gl-CGLS
methods to determine the Tikhonov parameters λ and proposes a more
automated approach of choices of the weight parameter ϖ that is ver-
satile and also can be used on a variety of problems.

An outline of this study is as follows: Section 2 deals with the
weighted global GCV function for regularization parameters. Section 3
describes the analysis of preconditioned Gl-CGLS regularization method
with weighted global GCV implemented for the image deblurring prob-
lems with multiple right hand sides. Numerical experiments and final
remarks are described in Section 4 and 5.

2. Weighted global GCV method for regularization param-
eters

The standard global GCV method in [12] can be a method of choosing
an efficient parameter for image deblurring applicatons. For a certain
class of problems, the small Tikhonov parameters chosen by GCV causes
under-smoothing of the solution, so that Gl-CGLS method with the
global GCV method may not perform well. Thus to improve the method
to choose regularization parameters, we modify the standard global GCV
function by introducing a new parameter ϖ to the trace term as in the
following function,

(2.1) T (λ,ϖ) = trace(I −ϖH(HTH + λ2I)−1HT ).

Definition 2.1. Let the weighted global GCV function Gglobal(λ,ϖ)
be defined as

(2.2) Gglobal(λ,ϖ) =
∥HXλ −B∥2F

T (λ,ϖ)2

for an user-defined weight ϖ where Xλ = (HTH + λ2I)−1HTB.

Notice that choosing ϖ = 1 gives the standard global GCV function
[Section 3, [12]]. If we choose ϖ > 1, we obtain smoother solutions,
where ϖ < 1 results in less smooth solutions. Our study is to propose
a more global and automated approach that can be used on a variety of
image deblurring problems rather than using a user-defined parameter
choice for ϖ.
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To our knowledge, in all work using weighted global GCV, only ex-
perimental approaches are used to choose ϖ. For smoothing spline ap-
plications, [8] empirically found that standard GCV consistently pro-
duced regularization parameters that were too small, while choosing ϖ
in the range 1.2 ∼ 1.4 worked well. [1] seek a parameter ϖ in the range
0 < ϖ ≤ 1.

When considering the reflective boundary conditions, the matrix H
can be diagonalized by the orthogonal two-dimensional discrete cosine
transform matrix C, H = CTΛHC when ΛH = diag(ρ1, ρ2, . . . , ρN ).
Therefore the next Lemma 2.2 can be obtained.

Lemma 2.2. If {ρi}Ni=1 represents the spectrum of H,

(2.3) Gglobal(λ,ϖ) =

∑s
j=1

∑N
i=1

(
λ2

ρ2i+λ2 [CBj ]i

)2
(
N −ϖ

∑N
i=1

ρ2i
ρ2i+λ2

)2 ,

where Bj is the j-th column of B.

Proof. Substitute a unitary spectral decomposition of H into HXλ−
B and T (λ,ϖ) then we get

(2.4) HXλ −B = CT (ΛH(Λ2
H + λ2I)−1ΛH − I)CB,

and

T (λ,ϖ) = trace(CT (I −ϖΛH(Λ2
H + λ2I)−1ΛH − I)C)

=

N∑
i=1

(
1−ϖ

ρ2i
ρ2i + λ2

)
= N −ϖ

N∑
i=1

ρ2i
ρ2i + λ2

=
N∑
i=1

(
1− ρ2i

ρ2i + λ2

)
+ (1−ϖ)

N∑
i=1

ρ2i
ρ2i + λ2

.

From (2.4) we can obtain ∥HXλ −B∥2F =
s∑

j=1

N∑
i=1

(
λ2[CBj ]i
ρ2i+λ2

)2
. Conse-

quently (2.2) can be replaced by (2.3).

Notice that parameters λ and ϖ are determined by minimizing the
weighted global GCV function (2.3). The minimizer usually cannot be
determined analytically because Gglobal(λ,ϖ) is a nonlinear function.
Considering the limitation of λ and ϖ, we can determine the value of λ
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and ϖ by solving constrained optimization problem

min
λ,ϖ

Gglobal(λ,ϖ)

subject to ρmin ≤ λ ≤ ρmax

κ1 ≤ ϖ ≤ κ2.

(2.5)

We used the Matlab toolbox fmincon to find λ and ϖ to minimize the
constrained function Gglobal(λ,ϖ) in (2.3).

3. Preconditioned Gl-CGLS regularization method with weighted
global GCV

To solve (1.1) numerically with λ = λϖgGCV , we can rewrite it in
certain situations as a minimization problem:

min
X

∥∥∥∥( H
λϖgGCV I

)
X −

(
B
O

)∥∥∥∥
F

(3.1)

that is equivalent to the symmetric positive definite Tikhonov system
with multiple right-hand sides

(3.2) (HTH + λ2ϖgGCV I)X = HTB.

Large sparse systems (3.2) can be solved by the global conjugate gradi-
ent linear least squares(Gl-CGLS) method as an iterative regularization
method.

Algorithm 1. Gl-CGLS

1. X0 is initial guess and compute R0 =

(
B
O

)
−
(

H
λϖgGCV I

)
X0.

2. P0 = S0 =

(
H

λϖgGCV I

)T

R0, γ0 = (S0, S0)F .

3. For k=0, 1, ..., until convergence do

i. Qk =

(
H

λϖgGCV I

)
Pk, αk = γk/(Qk, Qk)F ,

ii. Xk+1 = Xk + αkPk, Rk+1 = Rk − αkQk,

iii. Sk+1 =

(
H

λϖgGCV I

)T

Rk+1, γk+1 = (Sk+1, Sk+1)F ,

iv. βk = γk+1/γk, Pk+1 = Sk+1 + βkPk.
Enddo

The following theorem is about the solution norm where ∥Xk∥F in-
creases monotonically with k if the starting matrix X0 is zero.

Theorem 3.1. Let ψ(Xk) denote the error function of Gl-CGLS with
the weighted global GCV:

(3.3) ψ(Xk) =
(
XLS −Xk, (H

TH + λ2ϖgGCV I)(XLS −Xk)
)
F
,
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where XLS is a solution of (3.1). Then the Gl-CGLS iterate Xk can be
written as

Xk = X0 +

k−1∑
i=0

ψ(Xi)− ψ(Xk)((
H

λϖgGCV I

)T

Ri,

(
H

λϖgGCV I

)T

Ri

)2

F

(
H

λϖgGCV I

)T

Ri,

and if X0 = O then

(3.4) ∥Xk∥2F =

k−1∑
i=0

 ψ(Xi)− ψ(Xk)((
H

λϖgGCV I

)T

Ri,

(
H

λϖgGCV I

)T

Ri

)
F


2

.

Proof. See [12].

The following suggests an estimate of the magnitude of the error
function ψ(Xk) in (3.3).

Theorem 3.2. The error matrix Y = XLS −Xk, the residual Rk =
HTB − (HTH + λ2ϖgGCV I)Xk, and the error function ψ(Xk) satisfy

∥Rk∥2F /µ(Rk) ≤ ψ(Xk) ≤ ∥Rk∥2F /µ(Y )

where µ(Z) = (Z, (HTH + λ2ϖgGCV I)Z)F /(Z,Z)F .

Proof. Using the error function ψ(Xk) = (Y, (HTH +λ2ϖgGCV I)Y )F ,

the residual Rk = (HTH + λ2ϖgGCV I)Y, and

|(Y, (HTH + λ2ϖgGCV I)Y )F |2

≤ (Y, Y )F ((H
TH + λ2ϖgGCV I)Y, (H

TH + λ2ϖgGCV I)Y )F ,

the following is obtained:

µ(Y ) = (Y, (HTH + λ2ϖgGCV I)Y )F /(Y, Y )F

≤ ∥Rk∥2F /ψ(Xk).

Thus ψ(Xk) ≤ ∥Rk∥2F /µ(Y ). Similarly, ∥Rk∥2F /µ(Rk) ≤ ψ(Xk) can be
also obtained.

If Ω−T is a preconditioning matrix and Y = ΩX, then the precondi-
tioned version of (3.2) is

(3.5) Ω−T
(
(HTH + λ2ϖgGCV I)Ω

−1Y −HTB
)
= O
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and the matrix

(
H

λϖgGCV I

)
Ω−1 is well conditioned. The overall pro-

cedure for preconditioned Gl-CGLS with the weighted global GCV is as
follows:

Algorithm 2. Preconditioned Gl-CGLS with the weighted global GCV

1. Determine the minimizer λϖgGCV for the constrained minimization problem:

min
λ

Gglobal(λ,ϖ)

subject to ρmin ≤ λ ≤ ρmax

κ1 ≤ ϖ ≤ κ2.

2. Solve Ω−T (HTH + λ2
ϖgGCV I)X = Ω−THTB using preconditioned Gl-CGLS:

i. R0 =

(
B
O

)
−
(

H
λϖgGCV I

)
X0.

ii. P0 = S0 = Ω−T

(
H

λϖgGCV I

)T

R0, γ0 = (S0, S0)F .

iii. For k = 0, 1, 2, ... until convergence do

(i) Tk = Ω−1Pk Qk =

(
H

λϖgGCV I

)
Tk, αk = γk/(Qk, Qk)F ,

(ii) Xk+1 = Xk + αkTk, Rk+1 = Rk − αkQk,

(iii) Sk+1 = Ω−T

(
H

λϖgGCV I

)T

Rk+1, γk+1 = (Sk+1, Sk+1)F ,

(iv) βk = γk+1/γk, Pk+1 = Sk+1 + βkPk.
Enddo

Considering the reflective boundary condition, the preconditioner Ω
in (3.5) is set to Ω = CT (|ΛH |2 + λ2ϖgGCV I)

1/2C where C is two dimen-
sional discrete cosine transformation matrix.

4. Numerical experiments

Employing the weighted global GCV in preconditioned Gl-CGLS
method for solving image deblurring problems with three test images
which are named by x, grain, and text image, we investigated numeri-
cal results to illustrate the effectiveness of the regularization parameters
chosen from the minimization of the weighted global GCV function. The
size of the test image x is 32-by-32 and both grain and text are 256-by-
256. Using reflective boundary condition, these images are divided into
the collection of small blocks using 32 × 32 sub-blocks. These images
are degraded by Gaussian blur and Gaussian noise is added. Gaussian
blurring parameter is set to 1 for x and 3 for grain and text. Each blocks
of test images include 0.5%, 0.9%, and 3% in noise level respectively.



66 Seiyoung Chung, SunJoo Kwon, and SeYoung Oh

0 0.5 1 1.5 2 2.5 3
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−4

ϖ

Weighted global GCV function

Figure 1. Weighted global GCV function Gglobal(λ,ϖ)
for fixed λ in x image with 0.5% noise level has a local
minimum at ϖ ≈ 1.616366.

Noise level(%) x grain text

0.5 ϖ = 1 0.174017 0.228294 1.529964
0.1 ≤ ϖ ≤ 1 0.174450 0.245501 1.611033
1 ≤ ϖ ≤ 2 0.165560 0.207119 0.862073
2 ≤ ϖ ≤ 3 0.166581 0.217749 0.191185

ϖ, unconstrained 0.166477 0.208517 0.869487

0.9 ϖ = 1 0.362061 0.675613 4.711108
0.1 ≤ ϖ ≤ 1 0.359220 0.654529 3.865294
1 ≤ ϖ ≤ 2 0.248512 0.305815 2.787565
2 ≤ ϖ ≤ 3 0.221995 0.221234 0.334344

ϖ, unconstrained 0.221980 0.386014 2.084861

3 ϖ = 1 3.133529 7.160470 40.151111
0.1 ≤ ϖ ≤ 1 3.202195 8.294281 40.180446
1 ≤ ϖ ≤ 2 1.925261 3.899219 35.746096
2 ≤ ϖ ≤ 3 1.580581 0.962814 5.098610

ϖ, unconstrained 1.580739 5.071711 39.285166

Table 1. Relative accuracy

In order to get the local minimizer λϖgGCV of Gglobal(λ,ϖ), (2.3)
was solved by using the matlab function fmincon to find a constrained
minimum of a function of several variables.
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Noise level(%) x grain text

0.5 ϖ = 1 1.000000 1.000000 1.000000
0.1 ≤ ϖ ≤ 1 0.986884 0.989062 0.997578
1 ≤ ϖ ≤ 2 1.616366 1.089384 1.037937
2 ≤ ϖ ≤ 3 2.057542 2.028090 2.007250

ϖ, unconstrained 1.984640 1.063563 1.033435

0.9 ϖ = 1 1.000000 1.000000 1.000000
0.1 ≤ ϖ ≤ 1 0.986883 0.989063 0.997580
1 ≤ ϖ ≤ 2 1.616343 1.089360 1.037991
2 ≤ ϖ ≤ 3 2.057542 2.028089 2.007250

ϖ, unconstrained 1.984623 1.063517 1.033488

3 ϖ = 1 1.000000 1.000000 1.000000
0.1 ≤ ϖ ≤ 1 0.986874 0.989072 0.997603
1 ≤ ϖ ≤ 2 1.616219 1.089389 1.038674
2 ≤ ϖ ≤ 3 2.057521 2.028081 2.007244

ϖ, unconstrained 1.984490 1.063434 1.034158

Table 2. Weights corresponding to the results of Table 1

Noise level(%) x grain text

0.5 ϖ = 1 0.448780 0.142343 0.103687
0.1 ≤ ϖ ≤ 1 0.442439 0.131216 0.098718
1 ≤ ϖ ≤ 2 0.808796 0.289431 0.192443
2 ≤ ϖ ≤ 3 0.977290 0.983209 0.994775

ϖ, unconstrained 0.992795 0.248818 0.181961

0.9 ϖ = 1 0.448765 0.142343 0.103729
0.1 ≤ ϖ ≤ 1 0.442425 0.131217 0.098764
1 ≤ ϖ ≤ 2 0.808781 0.289391 0.192586
2 ≤ ϖ ≤ 3 0.977289 0.983209 0.994776

ϖ, unconstrained 0.992790 0.248728 0.182107

3 ϖ = 1 0.448773 0.142483 0.104358
0.1 ≤ ϖ ≤ 1 0.442427 0.131354 0.099459
1 ≤ ϖ ≤ 2 0.808756 0.289465 0.194380
2 ≤ ϖ ≤ 3 0.977294 0.983212 0.994786

ϖ, unconstrained 0.992781 0.248573 0.183951

Table 3. Regularization parameters corresponding to
the results of Table 1

In x image with 0.5% noise level, weighted global GCV function has
a local minimum at (λ,ϖ) ≈ (0.808796, 1.616366) when 1 ≤ ϖ ≤ 2.
Figure 1 is the graph of weighted global GCV function for fixed λ.

The relative accuracy, ∥X∗ −Xk∥F /∥X∗∥F , shows how well the true
image has been approximated. Table 1 shows the relative accuracy of
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preconditioned Gl-CGLS method with regularization parameters chosen
from both of the weighted global GCV and standard global GCV for
three different noise levels. Also, corresponding weights and regulariza-
tion parameters for each results of Table 1 are given in the Table 2 and
3 respectively.
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Figure 2. Comparison of the relative accuracy for grain
image when ϖ = 1 and ϖ ≈ 2.028089.

(a) (c)(b)

Figure 3. (a) is blurred and noisy grain image that each
block images have 0.9% noisy level. Both (b) and (c) are
restored images of (a) when ϖ = 1 and ϖ ≈ 2.028089.

For grain image with 0.9% noise level, Figure 2 shows the compari-
son of the change of relative accuracy along the standard global GCV
(ϖ = 1) and optimal ϖ from (2.3). Using the weighted global GCV
brings appropriate stopping point of the preconditioned Gl-CGLS algo-
rithms. On other side, using the standard global GCV needs more iter-
ations for satisfying stopping condition of the preconditioned Gl-CGLS.
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For the optimal ϖ ≈ 2.028089 using the weighted global GCV, 79 of
iterations are required with 60.57 of PSNR, while the standard global
GCV needs 418 iterations with 50.87 of PSNR. Degraded and recon-
structed images at the stopping point of the preconditioned Gl-CGLS
for the given tolerance are shown in Figure 3.
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Figure 4. Comparison of the relative accuracy for text
image when ϖ = 1 and ϖ ≈ 2.007250.

(a)  (c) (b)  

Figure 5. (a) is blurred and noisy text image that each
block images have 0.5% noisy level. Both (b) and (c) are
restored images of (a) when ϖ = 1 and ϖ ≈ 2.007250.

The simulation results for text image with 0.5% noise level are pre-
sented in Figure 4 and 5. For the optimal ϖ ≈ 2.007250 using the
weighted global GCV, 129 of iterations are required with 51.32 of PSNR,
while the standard global GCV needs 1403 iterations with 33.26 of
PSNR.
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5. Conclusions

To obtain more accurate approximation of the true images in deblur-
ring problems, we proposed an efficient way to determine the regular-
ization parameter by applying the weighted global GCV function to the
inverse problem with multiple right-hand sides. We analyzed the ex-
perimental results for many test problems and was able to obtain the
globally useful range of the weight when the Gl-CGLS method with the
weighted global GCV function is used.

In the future, our next study is to investigate a variant approach of
the global L-curve method and also to compare it with the weighted
global GCV method in determining the regularization parameter for
deblurring problem with multiple right-hand sides.
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