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ABSTRACT

This paper deals with the fault diagnosis problem in
uncertain linear systems having undermodelling,
linearization errors and noise inputs. The new approach
proposed in this paper uses an appropriate test
variable and the difference between system parameters
which are estimated by the least squares method to
locate the fault. The singular value decomposion lis
used to decouple the correlation between the estimated
system parameters and to observe the trend of parameter
changes. Some simulations applied to aircraft engines
show good allocation of the fault even though the
system model has significant uncertainties. The feature
of the approach is to diagnose the uncertain system
through simple parameter operations and not to need
complex calculations in the diagnosis procedure as
compared with other methods.

I . INTRODUCTION

In recent years, as the complexity and scale of the
systems have increased, some considerable attentions
have been directed to the fault detection and diagnosis

in order to improve the system performance and
reliability, The problem of fault detection and
diagnosis occurs when one wishes to determine, by

processing available measurements, whether or not a
system has been subjected to change, and if so, what is
the most likely nature of that change. The problem has
major economic and technical importance and, for this
reason, has been the subject of extensive study [1,2].

A fault may be defined as an abnormal change in the
characteristics of a system which gives rise to
undesirable performance [6]. The purpose of the fault
diagnosis of dynamic systems is to locate the source of
the fault. There is a vast body of existing literature
on fault diagnosis, for example, [1] to [5] and many
methods based on modelling and estimation have been
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proposed such as the parity space approach, the
innovation~based approach, the fault detection filter
approach and the parameter estimation approach [1].

In most existing methods, the models used are
assumed to accurately describe the relationships
between the various measurements with the primary
source of uncertainty being the measurement noise. This
assumption leads to the conclusion that arbitrary small
faults can be detected provided the system is observed
for long enough [4]. In addition, the assumption of
perfect modelling impacts upon the form of the
individual fault signatures used to distinguish between
faulty and nonfaulty conditions.

In practical situation, however, all mathmatical
models are only approximate descriptions of real
systems and the major sources of uncertainties are
undermodelling effects and linearization errors besides
the measurement noise. Thus any method which has been
developed based on the hypothesis of exact modelling
may give misleading results when applied to practical
systems having significant underaodelling or
linearization errors. There is therefore a strong
motivation to develop the robust fault detection and
diagnosis method with respect to molelling errors in
uncertain systems [1,7].

In recent papers, several approaches to improve the
robustness of the fault detection schemes have been
suggested, for example, [7] to {10]. On the other hand,
there are only a few iiteratures on the robust fault
diagnosis problem {1,11].

In the current paper, we propose a robust fault
diagnosis scheme based on the fault detection method
suggested by Kwon and Goodwin [7,12], which accounts
for undermodelling effects, linearization errors and
the measurement noise and shows a marked improvement
over those obtained with traditional methods. The key
idea in the current paper is to adopt a nominal model
with its denominator fixed, which is believed to
increase the parameter sensitivity with respect to the
fault and ensbles us to take the test variable for
fault detection also as an index for fault diagnosis.
follows. In

The organization of this paper is as



Section I, the problem formulation is given. The fault
diagnosis scheme is presented in Section K. Section NV
presents simulation results applied to aircraft
engines. Conclusions are given in Section V.

I . PROBLEM FORMULATION

The model uncertainty is characterized in a number
of ways. For the transfer function model, uncertainty
in the real system may be modelled as the additive
unstructured form [13]., The major sources of
uncertainty are undermodelling, linearization errors,
and measurement noise. Thus the model uncertainty in
linear discrete-time systems can be represented by the
following system description based on the Taylor series
expansion of the input—output relationship :

y(k)= G(q™! ’u(k)-rGA(q")u(k)*Gn(q“)uz(k)sign(u(k))
+ v(k) (2.1)

where q~! denotes the delay operator, G is the nominal
model, G, and Gan denote the aismatched model due to

undermodelling and linearization error respectively, v
is the measurement noise, and sign(-) is the sign
function. This system description is depicted by Fig.
2.1,
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input output
Fig.2.1 System description

The expansion given in Eq. (2.1) can be justified
either in terms of linearization about an operating
point or via the Hammerstein model description of
nonlinear systems in which the nonlinearity is
represented as a static element on the input side [14].

It is assumed that G, G, and Gn are stable and
causal and that the measurement noise v is a zero mean
white noise with variance 02 . The nominal model is

taken to be
B(z-1, 8,ns)
G(z-!,8) = —mM8Mm— (2.2)
F(z~1,np)
where F(z~1,nr) is a predetermined denominator and
B(z=%,@,np) = byz~! + bzz-2 + + bngz™"B
F(z™i,np) =1 + f1271 + f22°% + + fngz™"F
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@ =[by bz, » bnglT.

The denominator F(z~!,nr) can be determined from o
priori information about the system, e.g., appropriate
values of dominant poles or by some prior experiments
for the parameter estimation of the system. Note that
any linear stable system can be always approximated by
the nominal model by adjusting the orders np and nr.
Basically, errors in the denominator polynomial are
corrected by adjustments to the numerator polynomial.

Using the system description (2.1), the system
output has the following form

y(k) = B(q~t, &,nplur(k) + 7 (k) (2.3)
where

1

ur(k) u(ko

F(q~!,ns)

n(k) = GA(q")u(k) + Gn(q~Yu2(k)sign(u(k)) + v(k).

Eq.(2.3) can be represented in standard linear
regression form as
y(k) = ¢T(k)@ + 7(k) (2.4)
where
¢(k) = [ ur(k-1) ur(k-2), - - -, urtk-np) 1T. (2.5)

We define the parameter estimate using least squares
as

1 N
é = arg rinf; Ty(o-Bla™, 6.mur0]?)  (2.6)

where N is the number of data available. Note that
Eq.(2.6) corresponds to an output error ainimization
problem, However, the ordinary least squares algorithe
can be used to solve this problem due to the special
form of Eq.(2.2), which is one of the advantages of the
representation (2.2).

The least squares method then gives the estimated
parameters as

6 = [BTPI-1DTY 2.7
where

& = [6(1) B(2), -+« -, NIT (2.8)

Y= [y(D) y(@), - - - -, y(NOIT,

From Eqs.(2.4) and (2.7) we can also derive the
following expression for the estimation error :

6=6-6=[70110TS (2.9

where
S=[n(1)) M2, - - - -, 7N,

Denoting the impulse responses of G, and Gn as {h(-)}
and {hn(-)}, n(k) can be expressed as

k k
7 (k) = Th(Dulk-1)+Xhn(i)u?(k-i)sign(ulk-i))+v{k)
i=0 i=0



assuming that u(k)=0 for k<0 and h(k)=hn(k)=0 for k<0.
Then we obtain the following relationship @

S = WH + Wahn + V (2.10)
where
u(l) ¢
u(2) u(l) 9]
Vo= . . (2.11)
u(N) u(N-1) u{1)
H = [h(0) h(1) hiN-1)]7
VY= [v(l) vi2) v(N) T
u2{1)sign(u(1)) 0
u2{2ysign(ui2)) uZ{1)signtu{l)) 9]
Vo= . .
u2(N)sign(ui(N)) uZ(l)sign(u(1))
(2.12)
Hn = [ha{0) ha(1) ha(N-1) 1.

Note that {h{-)} and {ha(-)} are taken as stochastic
processes here based on the stochastic embedding

principle [18]. Given o priort information about the
seconc order statistics of h, hn and v, we can then
evaluate the expected wvalue of the estimation

error, E{ 4,‘3'(%). which will be the basis of the fault

diagnosis method to be described later.

W . FAULT DIAGNOSIS MATHOD

In the fault diagnosis procedure, we shall use the
test variable based on the covariance of the estimati:rn
error between two experiments. Thus in the sequel we
assume that there are two sets of data I and If, where
In corresponds to the nonfaulty data and Ir corresponds
to the suspected faulty data, The estimated parameter

by Eq.(2.7) may take different values in each
experiment :
é\n, for data set In
A
a = [ 3.0
&', for data set Ir
Given two sets of estimated parameters as in Eq.
(3.1) for the uncertain system of Fig. 2.1, we can

formulate an appropriate test variable as follows [7] :

-~
[l

= [a-br17C1[00-61] (3.2)

CoviOn-81) = E{[Bn-Bc1[En-Be1T}
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= [@n—Qe JR[Qn—Q¢ JT + [Qrn—Qns ]R.n[an'an]T

+ [Pa+Prlo? (3.3
vhere
Qi = Pid:i™ri,  Qni = PadiTvan
Pi = [®iTPilt, | =n,f
R = E{HHT}, Rn = E{HnHnT}

where E denotes the expectation with respect to the
underlying probability space and &, ¥ and ¥n are as
in (2.8), (2.11) and (2.12).

The first and second terms on the right side of Eq.
(3.3) account for the effects of undermodelling,
nonlinearities and the difference in input signals for
the two experiments, Note that if there js neither
undermodelling nor nonlinearity or if the inputs are
identical, these terms vanish. The third term on the
right side of Eq. (3.3) corresponds to the measurement
noise.

The stochastic assumptions corresponding to {(h(-)}
and {hn( - )} would be to assume
E(h(kh(D} = rk) §s;
E{hn(k)hnti)} = ralk) &y
where
r(k) = age‘ﬂk. (3.4)
ratk) = g2eAnk, k=0, 1,
62, 0%, 8 and B can be estimated from a sequence
of prior experiments on nonfaulty systems. The above
assumpt ions give
R = o2 diagll e # - AL
Rn = gf'l‘ diagl1 e~ Bn e-AntN-117,

It is possible to categorize several faults by the
test variable T of Eg. (3.2) though it is used as the
index to detect a fault. With a faull detected, wo can
locate the fault by investigating the magnitude of the
test variable amd the change of estimated parameters.
1t is, however, difficult to diagnose the fault
directly with the parameters if the parameters are
correlated with each other. In that case, we make a
singular value decomposition on C of Eq. (3.3) to
decouple the correlation between parameters as follows

C=UZYT (3.5)

where U is orthonormal and & is diagonal.

For the purpose of the fault diagnosis, if
necessary, we can transform the parameter difference
between the two experiments to a diagnostic variable
defined as follows :

@ = UT(én“él’).

(3.6)



Note that the covariance of (; is the diagonal
matrix X as shown below

EHaaT = U 8n-81)(8n-8)10}
= UTCU = UT[UZUTIU = =

and tha o'; has no correlation between each other
component, i.e.,

E{(;io?.i}= cidij
where
(; = [6‘:’1 o't"z (;ng]r
% = diaglor o2 Adng T,

Hence the parameter o? of Eq. (3.6) can be utilized as
the signature for the fault diagnosis.

V. SIMULATION

In order to illustrate the feature of the proposed
method, we present some simuiations for a military
turbofan gas turbine engine (F404-GE-400). Exact models
of aircraft engines are highly nonlinear [15] and thus
simplified linearized models are usually employed
[16,17]. For example, taking the engine fuel flow Wr as
the input and the fan spool speed Ni as the output, an

appropriate linearized nominal model is given as
follows :
Table 4.1 Data Sets from Aircraft Engine
Name Fault type Remark
CLF6 [No-fault Different
operating
CLF61 [No—fauit point
BLC 2% Compressor bleed The same
operating
FEF |-2X Change in fan efficiency point
as that
CEF |-2X Change in compressor efficiency [of CLF6
BEF |~2% Change in burner efficiency
HTEF |-2% Change in high press, turb. eff.
LTEF |-2% Change in low press. turb. eff.
PEX (100 HP compressor spool speed power
extract
A8D |2% Decrease in final nozzle area
A8 |2% Increase in final nozzle area
BEF1 {-2% Change in burner efficiency Different
operating
BEF2 [2% Change in burner efficiency point
froa
BEF3 {5X Change in burner efficiency CLF6
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be1p + boeq
ANp(t) = —— AWr(t) (4.1)
p? + f1cp + foc
where p denotes the differential operator.
Taking noise and linearization errors into

consideration, we can describe the underlying system by
the following discretized model similar to Eq. (2.1) :

ANL(k) = G(q™1) AWr(K) + Gn(q=[AWr(K)]Z + v(k)
(4.2)
where
B(q~t, &,nm) big~t + baq~?
Gg™1) = =
F(q~!,nF) 1+ f1q7! + foq 2

Noise-free nonfaulty data sets (CLF6 and CLF61) and
faulty data sets with various small changes were chosen
for the study as shown in Table 4.1, We have applied
the fault diagnosis method suggested in Section § to
this problem, as shown in Table 4.2. The following
constants were chosen : Sampling time Ts = 0.02, N =
350, ng = 2, o"f’, = 0.152 and the input AWr was assumed
to be corrupted by white noise with variance 62 =
0.003%2, The fixed denominator was taken by prior
experiments as f; = ~1.8238 and f2 = 0.8294 and the
values of fBa and q‘z as fBn = 0.0837 and g2 =
0.0818. Typical data sets used in this simulation are
shown in Fig. 4.1,

Table 4.2 Simulation Cases in Aircraft Engine
Fault Diagnosis

Case No. Experiment n Experiment f
NF1 CLF6 CLF6
NF2 CLF8 CLF61
F3 CLF6 BLC
F4 CLF6 FEF
F5 CLF6 CEF
Fé CLF6 BEF
F7 CLF6 HTEF
F8 CLF6 LTEF
F9 CLF6 PEX
F10 CLF6 A8D
F11 CLF6 A8I
F12 CLF6 BEF1
F13 CLF8 BEF2
F14 CLF6 BEF3

The simulation results are shown in Table 4.3 and
Table 4.4, Table 4.3 shows values of the test variable
and the diagnostic variable in each case of Table 4.2.
The fault types were classified by the test variable T
at first and then the more specific classification of
the faults was processed by the decomposed estimation

error a~ . Note that although the four fault groups
have two undistinct elements, Group 1 (BEF1 and BEF2)
has the faults from the same source, burner efficiency
and Group 5 (BLC and CEF) also from another same
source, COEpressor. !

Ancther diagnosis method based on the output error
estimation requiring complex calculations was applied
to the same problem by Smed et. al [17] and showed the
diagnostic performance to classify faults into 5
groups. Simulation results here show that the proposed



Table 4.3 Signatures for Fault Diagnosis,

Case TX10 @1 %x1072| @zx102
NF1 0.20+ 0.30 | —0.4619.39-0.01:0.05
NF2 0.18+ 0.13 | 0.55:9.02| 0.10:0.07
F3  |480.00:20.00 |134.17:9.38|—2.27:0.05
F4  |220.00:10.00 | 82.859.52|-1.56+0.05
F5  |480.00:20.00 |129.41:9.52|-2.33:0.05
F6  |140.00: 8.00 | 53.65:9.67]-1.27:0.04
F7  ]620.00+20.00 |144.21+9.20|-2.64+0.05
F8  |150.00£10.00 | 71.12:9.20|-1.28:0.05
F9 90.00:10.00 | 64.29:9.21|~0.97+0.05
FI0  |210.00+10.00 | 78.44:8.21|-1.53+0.05
FI1  [200.00:10.00 |~71.47:9.23| 1.50:0.05
F12 | 12.60+ 1.10 | 52.15:9.25)|-1.16:0.05
F13 | 17.10+ 1.40 | 53.60+9.22(-1.20:0.05
F14 | 26.00: 1.60 |120.39:+9.38)|-2.62:0.04

method has such a good performance that it isolates
faults into 9 groups occurred in an aircraft engine
which is known as a highly nonlinear system having
significant model uncertainties.

Note that the proposed method is based on the
ordinary least squares and that its computational
burden is much less than that of [17) based on the
output error method. In addition, note that there is no
false alarm in the fault detection using the method
proposed here.

Table 4.4 Classification of Faults

~N
by T by « Group
No.
Non— CLF6 CLF6
faulty [o}
Groups CLF61 CLF61
BEF1
BEF1 1
BEF2 BEF?2
BEF3
BEF3 2
FEF
FEF 3
Faulty A8D A8D
A8I
Groups A81 4
BLC BLC
5
CEF CEF
BEF BEF
[
LTEF LTEF
HTEF HTEF 7
PEX PEX 8
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V. CONCLUSIONS

A fault diagnosis method for uncertain systems
having undermodelling, linearization errors and noise
has been proposed. The key feature of this method is
that it accounts for the effects of mode] mismatch and
linearization errors besides noise and that it requires
simple parameter operations. Some simulations applied
to aircraft engines show that the proposed method works
well and outperform existing methods. This improvement
is a consequence of the fact that the fault diagnosis
method proposed here explicitly accounts for the
effects of model uncertainties.
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