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Abstract - This paper presents a novel approach for non-iterative surface smoothing with feature preservation on arbitrary 
meshes. Laplacian operator is performed in a global way over the mesh. The surface smoothing is formulated as a quadratic 
optimization problem, which is easily solved by a sparse linear system. The cost function to be optimized penalizes deviations 
from the global Laplacian operator while maintaining the overall shape of the original mesh. The features of the original mesh 
can be preserved by adding feature constraints and barycenter constraints in the system. Our approach is simple and last, and 
does not cause surface shrinkage and distortion. Many experimental results are presented to show the applicability and 
flexibility of the approach.
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1. Introduction

Large and complex mesh models are often obtained 
from points sampled over real-world objects. Recent 
advances of 3D scanning and acquisition technology 
call for developing robust and reliable methods fbr 
processing large and complex point and mesh data sets. 
But due to the inevitable physical noise added by a 
scanning device, points sampled from a 3D object often 
do not reflect their correct locations, resulting in meshes 
containing undesirable ro니gh features. Developing fast 
and robust methods for removing noise has become one 
of the most important 3D data processing operations 
[21,29].

Mesh smoothing, or denoising, is a process dedicated 
to the removal of noise with minimal damage caused to 
geometric features of the object. The ultimate goal of 
mesh smoothing is to produce highly smooth meshes 
efficiently, for rendering, modelling, and visualization, 
while still preserving the basic overall shape and 
important features of the original model. However, 
removing noise while preserving the features of the 
shape is not a trivial matter. Furthermore, scanned 
meshes often have cracks and non-manifbld regions, 
which makes the matter worse [13].

1.1. Previous work
A great deal of mesh smoothing algorithms has been 

proposed in the literature. Smooth meshes are charac
terized by low discrete curvature. The operators by 
which curvatures can be computed on meshes lead to 
simple filter algorithms that improve the smoothness of 

an existing mesh by moving the vertices in order to 
minimize the discrete curvature.

The most common techniques are based on Laplace 
smoothing [4,10], Ta나bin [32] introduced signal proces
sing on s니rf対ces that is based on the definition of the 
Laplacian operator on meshes and developed a fast and 
simple iterative Laplacian smoothing scheme. Desbrun 
et al.[5] extended this approach to irregular meshes 
using a geometric flow analogy. Ohtake et al. [24] 
extended the Laplace smoothing by combining geometry 
smoothing with parameterization regularization. Peng 
et al. [28] applied locally adaptive Wiener filtering to 
meshes.

However, these techniques are all isotropic, and 
therefore indiscriminately smooth noise as well as 
salient features, leading to shrinkage or undesired distortion 
of the mesh shape. To compensate these drawbacks, Liu 
et al. [19] proposed a method that keeps the volume of 
each star of a vertex. Vollmer et al. [36] s니ggested a 
method that is based on the idea to push the vertices 
back to their previous positions. Hildebrandt et al [12]. 
proposed an anisotropic smoothing scheme that reduces 
diffusion across edges. To achieve this, they modified 
the curvature normal operator by reducing the weight of 
terms that have a magnitude greater than a threshold.

Feature-preserving mesh smoothing methods [1,3,6] 
were mostly inspired by anisotropic diffusion in image 
processing [27] more recently. These methods modified 
the diffusion equation to make it nonlinear or anisotro
pic, thus could preserve sharp features. The work of 
[25,33,35] proposed dififusion-type smoothing on the 
normal field first, and then constructed the surface to 
match the new normals. Altho니gh these approaches are 
superior to those 니sing isotropic techniques, b니t they 
would ca니se significant computational times.

Recently, Jones et al. [13] proposed a statistical 
method to anisotropically smooth a mesh in one pass.
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This approach predicts the location of a vertex based on 
its neighbors. Robust statistics are used to deemphasize 
the contribution of vertices dissimilar to the one being 
predicted. Fleishman et al. [8] introduced a similar 
method based on bilateral filtering that is iterative. 
Bilateral filtering was originally formulated for image 
processing, and is a non-linear variation of Gaussian 
smoothing that weights sample points based on their 
similarity to the one being processed. However, it is not 
straightforward to assign appropriate parameters to get 
good results in the algorithms.

1.2. Our approach and contributions
In previous Laplacian smoothing algorithm, a local 

iterative procedure is 니sed to update the poistions of the 
vertices. The new position of a vertex may not solely 
depend on the set of old positions of its adjacent 
vertices but can depend on their previously calculated 
new positions, too. Hence, the result of one smoothing 
pass through all vertices will depend on the order how 
the vertices are considered.

Unfortunately, local Laplacian smoothing leads to a 
variety of artifacts such as geometric distortion and 
shrinkage due to the irregular connectivity of the mesh. 
Moreover, the iteration is sometimes numerically unstable, 
which seriously slows down the convergence. Further
more, it provides insufficient control over global behavior 
during smoothing for irregular connectivity meshes.

In this paper, we take a different approach for 
smoothing arbitrary meshes with feature preservation. 
We consider about the mesh smoothing as a problem of 
finding an approximating surface with a global minimi
zation of a surface feiring energy. Thus we adopt the 
Laplacian operator in a global way instead of a local 
way. The smoothed mesh is constructed by solving a 
spare linear system, which is fest and efficient, in a 
non-iterative way.

Feature constraints and barycenter constraints are also 
considered in our approach to keep the features of the 
original noisy mesh.

To our knowledge, o니r smoothing approach is the 
first approach to handle the issue of smoothing using 
non-iterative Laplacian operator in a global way. The 
contributions of our global smoothing for arbitrary 
meshes are summarized in the following:

• Global smoothing: The Laplacian operator is 
performed over the mesh but not over each vertex 
locally. The smoothed mesh is obtained by performing 
the global Laplacian operator.

• Non-iterative: Our global smoothing approach is 
non-iterative. The smoothed mesh can be constructed 
by solving a sparse linear system.

-Feature preserving: The smoothed mesh can keep 
the features of the noisy mesh without shrinkage and 
distortion by adding feature constraints and barycenter 
constraints in the linear system.

• Fast and efficient: Our approach is fest and 
efficient as it only needs to solve a sparse linear system 
which can be effectively solved by Cholesky factori

zation of the sparse matrix.

1.3. Overview
The paper is organized as follows. Section 2 gives the 

mathematical formulization for global smoothing and 
introduces the traditional Laplacian smoothing method. 
Our approach of global surface smoothing with feature 
preservation is described in Section 3. Section 4 discusses 
the implementations of our algorithm. Additional experi
mental results are illustrated in Section 5. We conclude 
the paper in Section 6 with the summary and future work.

2. Preliminaries

2.1. Surface smoothing—a global optimization 
problem

We start with formulating the problem of global 
s니rf衬ce smoothing more precisely: Given a mesh surface 
S with geometric noise, our goal is to produce a smooth 
and good quality mesh surface S' which is as close as 
possible to S, and preserves the features of S.

For a parametric surface, the problem of the global 
s니rf可ce smoothing can be formulized as a mathematical 
problem:

T，顽S') ⑴

where the minimized energy has to contain two 
terms: one that measures the fairness of the surface and 
the second that takes the resemblance with the original 
surface (data fidelity) into consideration:

,_ cz ')dudv '-sfdudv

smoothness constraint Data fidelity

where a and "are the weights for the two terms. The 
above minimization model for surface smoothing is 
generalized from the total variational model of Rudin- 
Osher-Fatemi well-known in the literature of image 
denoising [30].

The smoothing energy term used for smoothing can 
be the membrane energy [37]:

h 中(S’ ')dudv = +尸：)〈如 d V,

or the thin-plate energy [7,23]:

，)" = "%+2F；v+2fM)血dv.

The effects of these approximation errors on the 
resulting minimum energy surfaces are very difficult to 
estimate. In the discrete setting, the integrals can be 
approximated by a weighted sum over all vertices 
(quadrature formula) and the partial derivatives are 
approximated by divided differences [15,17,32].

2.2. Traditional local Laplacian smoothing
In this section the original version of the Laplacian 

smoothing will be reviewed.
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Let S = (" E, F), where 广二{vz|z= 1,2,.../} is the set 
of vertices, E is the set of ed응es, F= {7[卩= 1,2, 
and is the set of triangles in which each triangle 7} can 
be represented by a triple of vertex indices as T[ = <Zi, 
嵐1 £效，3 V 〃 •

The Laplacian operator can be linearly approximated 
at each vertex by the umbrella operator as used in
[15,32]:

[心4)=£圮"厂心 (2)
ye/*

where z*  is the vertex index set of neighborhood 
vertices to the vertex and m勺 is the weight of edge (z, 
^corresponding to vertex % with 勺=1 . Several weigh-

j g i*
ting schemes have been proposed, such as edge length 
scheme and cotangent scheme [5,32]. In our approach, 
we use uniform weighting for mesh smoothing since 
smoothing aims to improve the quality of the triangles 
in some sense.

The Laplacian algorithm is quite simple: the basic 
idea is that the position of vertex v； is replaced with the 
average of the positions of adjacent vertices, see Fig. 1. 
Practically the vertices of a mesh are incrementally 
moved in the direction of the Laplacian.

The simplicity of the algorithm is based on very 
basic, uniform approximations of the Laplacian. For 
irregular connectivity meshes this leads to a variety of 
artifocts such as geometric distortion, slow convergence 
for large meshes, numerical instability, and ins니fficient 
control over global behavior during smoothing. The 
latter includes shrinkage problems and more precise 
shaping of the frequency response of the algorithms.

3. Non-iterative Global Smoothing

Instead of moving the vertices locally and iteratively 
in the traditional Laplacian smoothing approach, we 
would like to solve all the vertices of the smoothed 
surface in a global manner.

3.1. Global Laplacian operator
For a vertex Vj its smooth condition is:

匕f)=0， (3)
j e i*

where 的 is the weight as in Eq.2 [9]. Eq.3 means

Fig. 1. The traditional laplacian smoothing algorithm.

that vertex i*  lies in the weighted average of its l-ring 
neighbors. It is known that the vertex lies in the 
center of gravity of its 1 -ring neighbors if we choose 
Wij = \ / dj, where 4 = is the valence of 好，in Eq.3.

Suppose all the vertices i= are unknown. 
It can be seen that the equations in Eq.3 of all the 
vertices form a sparse linear system. The linear system 
can be written in matrix form:

LX = 0, (4)

where L is an ?? x « matrix with elements derived 
from Wy:

1, i터,

Li广-Wij0j)eE,

0, otherwise^

X is the n x 1 column vector of the corresponding 
vertices.

The matrix L is called the Laplacian of the mesh S
[16,32].  Note that L has rank n - 1 for a connected 
mesh surface, which means, given L, the vertex 
positions X can not be uniquely determined by solving 
the linear systems witho니t any vertex position given.

If the geometry of some of the vertices are provided, 
we can reconstruct the geometry of the rest of the mesh 
vertices by solving the sparse linear system in Eq.4 in a 
least square sense like in [31]. As each vertex lies as 
close as possible to the weighted center of its 1 -ring 
neighbors, the vertices on the reconstructed mesh 
surface are distributed over the surface in a fair way. 
Furthermore, if we carefully select the provided vertices 
as feature points of the surface (as we can see in the 
following sections), the reconstructed mesh can effecti
vely approximate the given mesh. Thus the linear system 
(Eq.4) defines a s니rfWce that is visually smooth and fair 
approximation of the given mesh in a global way.

3.2. Feature constraints
In order to keep the features of the original mesh 

surface S, one or more feature points on S are first 
detected as ( *=(&  ,yk，羽)]kwC}, where C= (z'i,z2,L,4} 
is the set of indices of tne feature vertices. We also 
allow the user selects a set of vertices as the feature 
points.

The system reconstructs the positions of all the 
vertices 卩'of S' to minimize the following error 
functional:

min|ZX'|2+A2^|V (5)
X kwC

where 〃 is the weight of the feature vertex constraints. 
The first term in Eq.5 is the error of Laplace operator 
and the second term is the error of the feature vertex 
constraints.

The above functional is quadratic in every vertex and 
hence its partial derivatives are linear expressions. The 
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unique minimum is found if all partial derivatives with 
respect to the vertices vanish, which results in a sparse 
linear system as the following:

(6)

where F is an 5 x h matrix in which each row contains 
only one non-zero element used to constrain the 
position of the feature vertices with the element:

扁= ]"'J y (l<k<s,l<j<n;)
[0, otherwise,

and bF is an s x 1 column vector of the product of 
花at니re vertices and jU：

bk = pgik, l<k<s,g = x,y, orz.

Note that the linear system is defined for each 
component of the coordinates x, y, and z. The positions 
of the vertices can be found by solving the sparse linear 
system in Eq. 6 in a least square sense as:

X，= (A，A)TaE.

Fig. 2(a) shows a cat model with selected feature 
points shown in red color. In Fig. 2(b) and (c), the 
smoothed cat models are obtained by solving the sparse 
linear system in Eq. 6 with 卩=1 and 卩=5 respectively. 
Note that the smoothed mesh in Fig. 2(b) shrinks much 
than in Fig. 2(c). It can be seen that the reconstr니cted 
smooth mesh approximates the feature points closer as 
we increase the weight in 卩 Eq. 6. In sir experimen
tations, we found that the reconstructed mesh almost 
interpolates the feature vertices when we set #= 5.

3.3. Barycenter constraints
Altho니gh the smoothed mesh surface S' could preserve 

the features of S by approximating the feature vertices 
in the minimization problem in Eq.5, the least squares 
solution to the minimization problem would still lead to 
니ndesired distortion and shrinkage in region of non
feature vertices, see Fig. 2(b) and (c).

Fig. 2. Global Laplacian xmoothed mesh with feature vertex 
constraints. The feature vertices are highlighted in red color, (a) 
The origin이 cat mesh; (b) smoothed mesh with p= 1; (c) 
smoothed mesh with 卩=5.

The problem of distortion and shrinkage occurs 
because the Laplacian operator causes too much 
relaxation on the vertices. Therefore, we can introduce 
extra constraints to Eq.5 to reduce the vertex relaxation. 
Like in [18], we add the trian이e barycenter constraints 
in the minimization problem in Eq.5 to control the 
vertex relaxation. That is, we fix all the trian이e 
barycenters in position during smoothing, which can 
effectively prevent its distortion and shrinkage.

The barycenter constraint for a trian읺e T=<iJ, k> 
can be described as:

(yfi + v\ + I勺/3 =(屿 + 亡 + n) /3

Th니s we try to find the solution of the following 
minimization pro비em

min|ZXf+A2^|v7-v/
X keC

Z 겨(v,+v)+vk)一(V；+V/+Vk)|2, (5)
0牛F

where 為 is the weight of the barycenter constraint.
The set of coordinates of vr is found by minimizing 

the above error fonctional. Solving this quadratic minimi
zation problem results in a sparse linear system:

_ ，이 1。]

AX'= F X'= bF =b, (7)

where z is an n matrix in which the k-ih row 
contains only three non-zero elements 나sed to constrain 
the position of barycenter of the corresponding triangle 
Tk = <z1? z2, z3>with the element:

入,盘=，］。2，知
瓦广”

^0,otherwise,
\<k m, 1 < /<n,

and bz is an m x 1 column vector with the element: 

zW=Mgn+&2+g,3)，Tk={i},i2,i3),]<k<m, g=x,j，,orz.

Note that the linear system is also defined fbr each 
component of the coordinates x, y, and z. The positions 
of the vertices can be found by solving the linear 
system in Eq.7 as:

X- = (ArAr'Arb.

Fig. 3 shows a smoothing example illustrating the 
effect of barycenter constraints. In this example, no 
feature point is selected, i.e., s = Oand we set 人=0.3. It 
can be seen from Fig.3(b) that our approach does not 
shrink the mesh using the barycenter constraints and the 
sharp fMt나re vertices, such as vertices at the end of the
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（々） （幻

Fig. 3. Global Laplacian smoothed mesh with barycenter constraints, 
(a) the original bird mesh; (b) the smoothed mesh with barycenter 
constraints with parameter 入=0.3.

Fig. 4. Detection results of feature points. The detected feature 
points on the meshes are shown in red color.

bird tail, are smoothed out as there are no feature 
constraints there. Moreover, the vertices on the smoothed 
mesh are distributed more uniformly over the surfoce.

It can be observed that the feat니冀 constraints and 
barycenter constraints are basically the same types of 
constraints applied on vertices, i.e., they both penalize 
the displacement of vertices from their original positions, 
since the barycenter constraints are actually a weighted 
average of the feature constraints. In fact, these two 
types of constraints can be regarded together as vertex 
displacement constraints.

3.4. Boundary smoothing
For non-closed meshes, part of the neighborhood is 

not defined for boundary points. In our system, the 
boundary curves are smoothed separately and our 
algorithm handles boundaries by treating them as sharp 
feature edges. Adopting the same idea mentioned in the 
previous sections, the feature constraints and center 
constraints may also be introduced to keep the features 
of the boundary curves and to prevent the boundary 
curves from shrinkage and distortion.

3.5. Detection of feature vertices
Feature extraction has been studied research area in 

many scientific fields [2,14,26]. As the definition of 
feature is highly subjective and is very difficult to 
express in algorithmic form, feature detection on 3D 
data is generally not an easy job, especially for 3D 
noisy mesh data [11,20].

In our smoothing application, we only concentrate on 
point-type features and we put particular emphasis on 
efficiency of the detection method. We therefore adopt 
a fast and heuristic feature detection approach based on 
normal variation of adjacent triangles as the following. 
We first perform a Laplacian operator on the mesh 
surface, i.e., the position of every vertex is replaced by 
the average of the centers of the triangles that are 
adjacent to this vertex. Then a vertex of the original 
mesh is detected as a feature vertex if the variation of 
the normal of its corresponding vertex in the smoothed 
mesh with the average normal of its 1-ring neighbor 
triangles is larger than a specified tolerance. This simple 
approach is fost and effective for most meshes in our 
experiments. Fig. 4 shows the results of feature detection 
from two mesh models using this simple scheme, where 

the detected feature points on the meshes are shown in 
red color. The user is also allowed to specify the feature 
vertices on the mesh surface in our system.

3.6. Parameters
As we will see in the following section, using 

uniform weighting scheme in Eq.3 work well for 
smoothing mesh models with dense or nearly uniform 
sampling in o나r approach. But for low resolution mesh, 
there might be large tangential movement for some 
vertices on the mesh, see Fig. 3(b). Therefore, we 니se 
non-uniform weighting scheme, such as cotangent scheme
[5,32],  for low resolution mesh models, to obtain better 
smoothing results.

Our approach 니ses the same parameters 卩 and 2 for 
all the feature constraints and barycenter constraints in 
most of our examples. We have investigated to see how 
the parameters affect the reconstructed mesh in some 
details. In many examples, if we only separate the 
vertices into two groups, Le., feature vertices and non
feature vertices, and use same weights for all feature 
vertices in the approach, there might be artifacts in the 
smoothed meshes. Like in the reference [22], we use 
Gaussian-weighted center-surround evaluation of curvatures 
on meshes and measure the features in different size 
and importance. Thus different weights can be assigned 
to different vertices by their feature importance, see an 
example shown in Fig. 5.

Fig. 5. Feature importance computed by Gaussian-weighted center
surround evaluation of curvatures for the vertices on the bunny 
model using the method in [22].
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3.7. Discussions
The constraints described in the previous sections are 

soft constraints as the smoothed mesh only approxi
mates the constraint points in a least sq니ares sense but 
not interpolates.

We can as well put hard constraints on the mesh 
vertex positions in our system. That is, a set of vertices 
can be fixed so that the smoothing is performed only on 
the rest of the mesh. More complicated constraints are 
also possible by adding more appropriate eq니ations into 
the linear system.

Furthermore, our algorithm can be easily applied 
locally. Our system also allows to smooth a part of a 
mesh less than another one, in order to keep desirable 
features while getting a smoother version, which happens 
to be useful in practice..

4. Implementations

The matrix A’A or A’A are also sparse since in 
every row of the matrices only the entries corres
ponding to vertices in the 2-ring neighborhood are non
vanishing. The most time-consuming part of our 
algorithm is solving the sparse linear system. We 니se 
the direct solver in [34] in our implementation. The 
Cholesky factorization of the matrix A『A = R「R is first 
fb니nd, where R is an upper triangular matrix. Then x, y, 
and z are respectively found by solving two triangular 
linear systems RrRX=Arb, that is and RX=X^. 
Most of the time is spent on computing the Cholesky 
factorization, while the time of the solving is negligible. 
As stated in [34], the factorization is fast enough for the 
applications.

5. Experiments and results

All the examples presented in this paper were made 
on a 1.8 GHz Athlon computer with 512 MB memory. 
Feature vertices are not shown in the mesh surface in 
order to compare the rendering effects of the smoothed 
mesh surface with the original mesh surface.

The weight parameters 卩 and 2 measure the importance 
of feature constraints and barycenter constraints respec
tively. It is worthwhile to point out that the two 
parameters are important for the smooth effects. The 
smoothed mesh could almost interpolate the feature 
points when 卩 is large enough. The mesh co니Id not be 
smoothed much if the parameter 卩 is set to be too large.

In Fig. 6(a), Gaussian white noise is added to an "8”- 
shape model. The constructed smoothed mesh is shown 
in 6(b) with parameters 卩=5 and A = 0.1.

Fig. 7 and 8 are two smoothing examples using our 
global smoothing approach for real scanned mesh data.

Fig. 9 shows an example for smoothing a noisy 
model with sharp features. Note that the sharp edge 
features are well preserved in this example.

It is worthwhile to point out that our smoothing 
approach is also applicable for noisy meshes with 
topological errors and non-manifold meshes. For the

Fig. 6. Global laplacian smoothing for an "8”-shape model. The 
models are flat shaded in order to enhance the noise efi^cts: (a) the 
model of an "8” model with heavily added random moise; (b) the 
smoothed mesh with parameters 卩=5 and 2 = 0.1.

Fig. 7. Denoising a scanned mesh of a dog model using our 
approach: (a) the noisy mesh data; (b) the smoothed mesh with 
parameters 卩=5 and 人=0.1.

Fig. 8. Denoising a scanned mesh of a dragon model using our 
approach: Note that features such as sharp comers are preserved: 
(a) the noisy mesh data; (b) the smoothed mesh with parameters 
ju=5 and A- 0.06.

Fig. 9. Denoising a noisy mesh with sharp features using o나r 
approach. (a) the noisy fandisk model; (b) the smoothed model 
with parameters 人=0.1.

purpose of smoothing using our global Laplacian 
approach, it is not necessary to require that a surface 
mesh is manifold. The only requirement is that the 
neighborhoods of each vertex are about the same as
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Fig. 10. Denoising a scanned mesh of a lion-dog model using our 
global Laplacian smoothing approach. The mesh is non-manifbld. 
Note that features such as sharp comers are preserved: (a) the noisy 
mesh data; (b) the smoothed mesh with parameters 〃 = 5 and 
人= 0.01.

they are on the underlying real surface. Our algorithm 
uses the neighbor information to perform the global 
Laplacian smoothing on the mesh surface. The Lion- 
Dog model shown in Fig. 10(a) is a real scanned noisy 
mesh model with variety of non-manifold structures. 
Fig. 10(b) shows the smoothed mesh with parameters 
#=5 and 2= 0.1.

A comparison to the other smoothing approaches is 
shown in Fig. 11. The model of Venus head shown in 
Fig. 11(a) is a real scanned mesh data with much noise. 
The smoothed mesh using traditional Laplacian 
smoothing method is shown in Fig. 11(b). We can see 
the shrinkage in the smoothed mesh. Fig. 11(c) is the 
result using the approach of [13]. The result using our 
global Laplacian smoothing approach is shown in Fig.

Table 1. Running time fbr different examples shown in the paper.

Model Vertex number Running time(s)
Eight (Fig. 6) 12,286 1.95
Dog (Fig. 7) 195,586 71.25
Dragon (Fig. 8) 100,056 22.75
Fandisk (Fig. 9) 6,475 0.96
Lion-Dog (Fig. 10) 24,930 2.79
Venus (Fig. 11) 134,359 42.0
Bunny (Fig. 12) 34,839 558

11(d) with parameters 〃=5 and A = 00.5. We can see 
that our result is as good as the result of [13], with 
better feature preservation in some regions, such as the 
eye and lip regions, in the "V&i니s head model. We 
present this comparison to demonstrate the effectiveness 
and superiority of our approach for smoothing.

We can easily generate new surfaces with controllable 
smoothness from a noisy mesh surface by applying 
different parameters in our algorithm. Fig. 12 shows the 
res니Its by applying our algorithm to the bunny model 
with different parameters A.

Table 1 lists the running time of the global Laplacian 
smoothing examples shown in this paper. As we can 
see, our approach achieves a good combination of speed, 
smoothness quality, and shape and feature preservation.

6・ Conclusions

In this paper a novel technique for the elimination of 

Fig. 11. Comparisons with other smoothing 叩proches. Observe the difference in details in the area of the lip and eye; (a) the noisy Venus 
head mesh data; (b) the result denoised by the traditional laplacian smoothing approach; (c) the result using bilateral filtering approach in 
[13]; (d) the result of our global Laplacian smoothing approach with parameters g = 5 and 九=0.05

Fig. 12. Smoothed surfaces with controllable smoothness using different choices of parameters in our system; (a) the noisy mesh; (b)-(d) the 
smoothed mesh surfaces using the parameters A =2 0.3, 0.05, 0.01, respectively.
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noise in arbitrary mesh surfaces has been developed and 
applied successfully. The Laplacian operator is performed 
over the mesh surface in a global way. The noisy mesh 
is smoothed by solving a sparse linear system. Feature 
constraints and barycenter constraints can be added into 
the linear system to keep the features of the noisy mesh 
and to avoid the shrinkage and distortion during the 
smoothing. The proposed approach presents certain 
advantages: it is non-iterative, fast and effective; it is 
also applicable fbr non-manifold meshes, We demon
strate the superiority of our approach over traditional 
approaches by many experimental results.

It is much worthwhile to extend our approach to other 
surface fairing energy instead of Laplacian operator. We 
believe that this extension is feasible but not straight
forward.
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