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Abstract: This paper considers the design problem
of adaptive filters based on the state-space models
for linear discrete-time stationary stochastic signal
processes. The adaptive state estimator consists af
both the predictcr and the sequential prediction
error estimator. The discrete Chandrasekhar filter
developed by author is employed as the predictor and
the nonlinear least-squares estimator is used as the
sequential prediction error estimator. Two models are
presented for calculating the parameter sensitivity
functions in the adaptive filter. Onme is the exact
model called the linear innovations model and the
other is the simplified model obtained by neglecting
the sensitivities of the Chandrasekhar 3¢ and @/
functiens with respect to the unknown parameters in
the exaCt model

1. Intreduction

In many digital control systems or signal process-
gs, the state-space models(SSN’s) are net known com-
pletely and, in general, involve the unknown parame-
ters. In the state estimation problems for such
contrel systems ar signal processes both filter and
estimation algorithm to estimate unknown parameters
pmust be used simultanegusly in order to avoid the
instability of the filter, viz., the divergence of
the filter due to the insufficient models with un-
known parameters.

Although for this problem the digital adaptive
filter based on the SSN has been proposed (1] using
the Kalman filter, this adaptive filter has disadvan-
tages that the computational storage and time are
large and the calculation of the filter becomes
unstable. The digital Chandrasekhar-type filters,
which have less computational time and storage than
the Kalman filter, have been presented based on the
SSM {2].

This paper considers the design problem of digital
adaptive filters using vector Chandrasekhar-type fil-
ters where the system parameters are partially un-
known. Namely, the vectar adaptive Chandrasekhar-type
filtering algorithms based on the SSM are derived
using the sequential nonlinear least-squares
algorithms(SNLSA’s) as the parameter estimators. This
paper is an extension of the scalar digital adaptive
Chandrasekhar-type filters({3],[4]. The computatianal
time and storage in calculating the propased dis-
crete adaptive Chandrasekhar filter is less than that
in calculating the adaptive Kalman filter. The reason
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is that the number of the difference eguations ta be
solved in the Chandrasekhar filter is {n+2nm} and
that in the Kalman filter is {n+n(n+1)/2} where n is
the dimensiaon of the system states and m is the di-
mension of the measured gutputs. If a) m, then the
computational time and storage in calculating the
discrete adaptive Chandrasekhar filter is greatly
reduced compared with the adaptive Kalman filter.

In this paper especially two special cases are
considered. The first case is that the unknown pa-
rameters are involved in only the state matrix and
the second case is that the parameters are involved
in only the cbservation matrix. It is shown that for
the two special cases the adaptive Chandrasekhar fil-
ter becomes simpler than that for the general case.

Consider the linear statignary discrete-time dy-
nawic system and measurements with unknown parameters
given by

(44 D=F(8)x()+6(H )ult) ,x(0)=xs(1.C.), (2.1
z(t)=H(O8 dx (1), 2.2
y(t)=z(t)+v(t),t< [0,c], (2.3

where t and ¢ are integers and y, z, veR", x<R", ue
R", xa ¢ R", F(&)E R ™, G(B)& R, and H(E )& Raxn
are measurement, signal, measurement neise, state,
input noise, initial condition, system matrix, input
matrix, and output matrix, respectively. It is assum-
ed that the noises have the following properties.

Elxel=E[u(1)]=E[v(t)]=0, (2.4a)
Elu(t)xe'1=0, Elv()xs71=0, Elu(t)v(s)]=0,
(2.4b)
Elxexe']=IInER""", (2.4¢)
Elu(t)u™(s)1=08+.« €RV™ (@20), (2.4d)
Elv(t)vT(t)]=R& .. €R™ R>D), (2.4e)

Notations T and &:.s dencie transpose and Kroneker's
delta function. Suppose that the system, input, and
gutput matrices contain the unknogg parameters 6.
Far the case where the estimates & of the unknown



parameters have been obtained, the Chandrasekhar fil-
tering equations are represented by([2]

R(t+1)=F(@ ()X (1)+3E(t+1) [y(t+1)-

HOB ()R (t+1/D1, (2.52)
2(0)=H(6 (D)X (D)=y (1), (2.5b)
R+ 1/)=F(6 (DX ), (2.5¢)
(0= ) I.C.), (2.54)

where the Chandrasekhar 3 function appeared in
(2.5a) is calculated from a pair of difference equa-
tians for the Chandrasekhar 3 and %/ functions,

FH(t+1)=3€(L)-Y(1+1)

X [H(6 (1))FCE UYWRITRT,  (2.68)

3C(0)=[TaHT(6 (0)) R+H(S (0)) [ToH(F (03]
(I.C.y, (2.5b)

QL+ D)={F(8 (1)-C+DHB (DIF(H (1)) 1)

(2.7a)
= [I-06CDH(E (D TF(F (YD)
X [I-R(HCH ())F(8 (1)) PR
XH(8 (1))F(G (DY ()]-7, 2.7
Q0= (1.C.), (2.7¢c)

or alternatively a pair of difference equatians given
by

DE(+1)=[FE()-F(8 (1) Y1) (H(6 (1) F(B (1))

x@/(t)B)TR"IXEI—(H(G(t))F(G(t))@(t))R

X (H(6 (1))F( (L) 'R ITT, (2.8)
QY(t+D)=[1-F(+ DH G A TF(E ()P . (2.9)
We note that either (2.6)-(2.7) or (2.8)-(2.9) is
used to evaluate the Chandrasekhar X and @/ func-
tions in the Chandrasekhar filtering. Figure 1 shows
the blackdiagram representation for the discrete-time
dynamics of the Chandrasekhar 2¢ and @/ functions.
The Chandrasekhar filter shown abave is used as a
predictor in the adaptive filtering scheme.

3. Seguential Predictign Error Parameter Estimatorfil

In the preceeding section, the vector measurement

case was considered for the Chandrasekhar filtering
technique. In the suceedings, the scalar measurement
case is considered in the derivations of the adaptive

filter for notational simplicity. Let the measurement
be specified by

y(=H(B ()XW +v(D),

H (3.1a)
=y(t)+v(t), (3.1b)
F(=H(B ()% (D), 3.1¢0)
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where y is scalar measurement and HeR'”"™ is the
column vector. As the sequential prediction error
estimation, the SNLSA is employed to update the esti-
mates of the unknown paramater. The algorithm for the
scalar measurement case is specified by

6 (1)= 6 (t-D+P(t-1) & (t-1) [y(D)-y (1, 8 (+-1)1,

(2.2)
P(t-1)=P(t-2) |
P~ P U-D@ (t-DIBH-D]1/[1+
O (-D'P(t-2) D (t-DI, (3.3
where
Yt 8)=H(8)x(D), (3.9)
O (t-1)=[dy(t, 6)/d6 1] abr 15, (3.52)
=lde(t,0)/d60]]u-be-1s, (3.5b)
& (t, 6)=y(t)-y(t,9), (3.6)
and the initial condition are given by
8 (=0, @7
p(O=alla>1), (3.8)

respectively. In the next section, the calculation
procedure is presented for the ¢ function in the
SNLSA.

4, Calculation Procedure for & -Functicn

Let the number of the unknown paramaters to be
estimated in the system be g and then the ®-function
has g elements such that

DEY=LB (1), Ba(t), oo, Da(D]T, 4.1
where
O (t-D={a¥(t, /86 1] ei b cers, 4.2

i=1,2,-++,4.

Hence, the calculation of the & ;-function yields

D (t-1)=Ho: (6)X(1) +H(6)Re (1), 4.3
where the notations

Hei(&)=9H (8)/ 26, (4.4a)

Xoi(t) = 2x(1)/ 2684, (4.4b)

were used for the partial differentiation. We present
the algorithms for calculating the sensitivity func-
tiens of the output vector H and the state x with
respect to the unknown parameters & ;.

Differentiate the filtering up-date equation
(2.5a) with respect to 6. to obtain



Ko (1+1)=[-0€0; (1+1DH(8 )-36(1+ Do, (8 ) F( 61 (1)
+[1-2E(1+ 1DH( O )1Fo: (6 )x(t)
+[I-5E(t+ 1DH( O YTF( 8 )xer: (1)
+3Ce i (t+ 1)y (1+1), (4.52)

R
%6.(0)=0,1=1,2,-++,q(I.C.). (4.5b)

In the above expression, the unknawn sensitivity
function xe: is involved and therefore in order to
abtain this value, we differentiate (2.6a) with res-
pect to & to gbtain

Hoi (1+41)=03€Ce: (1)~ Qo (1+1) [HFY (L)}
~Q/(1+1) (He F Y (t)+HFe J()+HF Y (D11, (4.6)

In the meanwhile, the sensitivity function @, can
be calculated from (2.7b). The result is

Yo (1+1)=[1-(HFR(1)) " (HFZA (1)) 1 #
X { (~3Ce;i (1)H-2C(t)Ha DF}A(1)
~{I-2C(HFe , Y(D)
+I-ECO W FRei (1)) X {1-(HEQ (1) ) (HF (1))}
+(I-2E(OHHIFY(t)
X {(-Ha i FRA(L)-HF o . Bt ) +HFYe i (1)) T(HERA(L))
+(HFZ (1)) " (He FY(1) +HF o Y (1) +HFRw (1)} .

(4.7)

We note that the algorithm given by (4.5)-(4.7) in
addition to the adaptive filtering equations carre-
spands to the linear innovatiaons model(1] for the
adaptive Kalman filtering technique. This algorithn
is a little complivated and therefore an approximated
pmodel is proposed for neglecting the terms which do
nat affect extensively on the calculations of numeri-
cal values in the sensitivity equaticns. The approxi-
mated model is called the simplified model which neg-~
lects the sensitivity function of the Chandrasekhar X
-function with respect to the unknown parameter.

Equating 2Ce=0 in (4.5a), we have

Ror (t+D)=~JE(t+ D g F OB IR(L)
+{I-2Ct+H(A ) 1Faix (L)
+[I-2€(L+DH(G ) IF (A )Fai (). 4.8)

It is noticed that this simplified model provides us
with an algorithw that yields less cowputaticnal time
and storage than the innovation models.

5. Special Cases
5-1. Case 1(F=F(&)).

Cansider the case when the unknown parameters are
involved in ¢nly the system matrix such that

F=F(8). 5.1

For this case, the algerithm can be easily obtained
by equating H(@ )=H and He(6)=0 in (2.5 a-b), (2.6),
(2.7), (4.3, (4.5a), (4.5)-(4.7). The results for
bath the linear innovations madel and the simplified

model are obviously represented as follows. Namely,
the linear innovations model is specifed by the fol-
lowing equatians

A fe A
(1) =M (t)=y(t), (5.2)

R+ D=F(6 (1)R(0+ 6(1+1) [y(t+1)-HECE (1)) 5 (1),

. ) (5.3a)

=(I-E(t+ DB FCE (D)X (L) +FE(t+ Dy (t+1),
X (5.3b)
X(0)=2(0)y(0), (5.3¢)

FHK(t+1)=56(1) -Y(t+1) [HF(H (1)) BH(ORIIRT,  (5.4)

Y= (1 X(OHIF(H (1))
X [(I-RHF( G (1)) 'RV HF(E (1)1 !,

(5.5)

CD.(t—l)=er.(t)lé . (5.8)

.=9i (t"l)

Xoi (1+1)=-3€s: (t+1DHF( B (1)) (1)
+[1-9€(t+1DHIFe (8 (1))X(1)
+[I-2C(L+DHIF (O (1))Xo, (1)
+360 (1+ 1)y (1+1), (5.7)

Hei(t+1)=3e; (1)-%o: (1+1) [HFR/ (1) ]!
- QP+ {HFe (L) HHF Y (1)1, (5.8)

e (1+1)={1- (HFY(1)) " (HF (1)) ]!
X {-3€o i (1 HFY(1)
+(I-E(H)Fe i /(1)

+{I-E(DWFYe i (1)}

X {1-(HFQA(t)) T(HF (1))}

+(I-2E(HOH) FY(t)

+{(-HFo 1 (1) +HFY o (1)) ' (RFY(1))

+ (HF@ (1) T (HF o (1) +HF Qe (1]

(5.9

However, the simplified model is given by the simple
equations such that

Ro, (1+1)= [1-36Ct+ D HIFo, (6 (1))K(1)
+{I-2E DHIECE (1))Re i (1), (5. 10a)

o ()= (1)=0. 5. 10b)

5-2. Case 2(H=H(@))

The second case is that the unknown parameters are
assumed ta be involved in only the observation ma-
trix. Namely,

H=H(6).

Then we alsc obtain the adaptive Chandraskhar filter-
ing equation in equating F(&)=F and Fa:(&)=0 in the
corresponding equations. Ths results for both models
mentioned in the preceeding sections can be easily
obtained.The results are amitted for the reason of
space



6. Conclusions

In this paper the adaptive Chandrasekhar filter
based on the SSN was developed for the adaptive est-
imation of the states and parameters in linear dis-
crete time-invariant dynamical systems. Twa types of
wmodels were presented to calculate the sensitivity
functions with respect to the unknown parameters. One
was the conventional Ilinear innovations model and the
other was the simplified model which has less compu-
tational time and storage than the innovations model.
It was explained that the adaptive Chandrasekhar fil-
tering technique is superier to the adaptive Kalman
filtering technique from a computational point of
view. Also, the adaptive Chandrasekhar filter is
stable in the numerical calculations.
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ZY (1) =Y (t+1) % (1)
Y (t+1) YL +
- % (1)
N 7z HF () o (OYREo T & zo -
+ —
F ()
X (t+1) HF
4 («) HF
Fig.1 The blockdiagram representation
for a pair of difference equations
of Chandrasekhar X and ¥ functions
((2.6a) and (2. 7a))
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