Browse > Article
http://dx.doi.org/10.12989/scs.2017.24.3.359

Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions  

Moradi-Dastjerdi, Rasool (Young Researchers and Elite Club, Khomeinishahr Branch, Islamic Azad University)
Payganeh, Gholamhassan (Department of Mechanical Engineering, Shahid Rajaee Teacher Training University (SRTTU))
Publication Information
Steel and Composite Structures / v.24, no.3, 2017 , pp. 359-367 More about this Journal
Abstract
In this work, transient heat transfer analysis of functionally graded (FG) carbon nanotube reinforced nanocomposite (CNTRC) cylinders with various essential and natural boundary conditions is investigated by a mesh-free method. The cylinders are subjected to thermal flux, convection environments and constant temperature faces. The material properties of the nanocomposite are estimated by an extended micro mechanical model in volume fraction form. The distribution of carbon nanotube (CNT) has a linear variation along the radial direction of axisymmetric cylinder. In the mesh-free analysis, moving least squares shape functions are used for approximation of temperature field in the weak form of heat transform equation and the transformation method is used for the imposition of essential boundary conditions. Newmark method is applied for solution time depended problem. The effects of CNT distribution pattern and volume fraction, cylinder thickness and boundary conditions are investigated on the transient temperature field of the nanocomposite cylinders.
Keywords
transient heat transfer analysis; carbon nanotubes; nanocomposite cylinders; mesh-free method; various boundary conditions;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Esfe, M.H., Motahari, K., Sanatizadeh, E., Afrand, M., Rostamian, H. and Ahangar, M.R.H. (2016), "Estimation of thermal conductivity of CNTs-water in low temperature by artificial neural network and correlation", Int. Commun. Heat Mass Transfer, 76, 376-381. Available from: http://dx.doi.org/10.1016/j.icheatmasstransfer.2015.12.012   DOI
2 Haghighi, M.G., Eghtesad, M., Malekzadeh, P. and Necsulescu, D.S. (2009), "Three-dimensional inverse transient heat transfer analysis of thick functionally graded plates", Energy Convers. Manag., 50(3): 450-457. Available from: http://dx.doi.org/10.1016/j.enconman.2008.11.006   DOI
3 Han, Z. and Fina, A. (2011), "Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review", Progress Polym. Sci., 36(7), 914-944.   DOI
4 Hetnarski, R.B. and Eslami, M.R. (2009), Thermal Stresses-Advanced Theory and Applications, Springer, The Netherlands.
5 Imtiaz, M., Hayat, T., Alsaedi, A. and Ahmad, B. (2016), "Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects", Int. J. Heat Mass Transfer, 101, 948-957. Available from: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.05.114   DOI
6 Kshirsagar, J.M. and Shrivastava, R. (2015), "Review of the influence of nanoparticles on thermal conductivity, nucleate pool boiling and critical heat flux", Heat Mass Transfer, 51(3), 381-398.   DOI
7 Kundalwal, S.I. and Meguid, S.A. (2015), "Effect of carbon nanotube waviness on active damping of laminated hybrid composite shells", Acta Mechanica, 226(6), 2035-2052.   DOI
8 Kundalwal, S.I. and Ray, M.C. (2014), "Estimation of thermal conductivities of a novel fuzzy fiber reinforced composite", Int. J. Thermal Sci., 76, 90-100.   DOI
9 Kundalwal, S.I., Kumar, R.S. and Ray, M.C. (2013), "Smart damping of laminated fuzzy fiber reinforced composite shells using 1-3 piezoelectric composites", Smart Mater. Struct., 22(10), p. 105001.   DOI
10 Kundalwal, S.I., Kumar, R.S. and Ray, M.C. (2014a), "Effective thermal conductivities of a novel fuzzy carbon fiber heat exchanger containing wavy carbon nanotubes", Int. J. Heat Mass Transfer, 72, 440-451.   DOI
11 Kundalwal, S.I., Kumar, R.S. and Ray, M.C. (2014b), "Effective thermal conductivities of a novel fuzzy fiber-reinforced composite containing wavy carbon nanotubes", J. Heat Transfer, 137(1), p. 012401.   DOI
12 Kundalwal, S.I., Kumar, R.S. and Ray, M.C. (2016), "Smart damping of laminated fuzzy fiber reinforced composite shells using 1-3 piezoelectric composites", J. Vib. Control, 22(6), 1526-1546. Available from: http://stacks.iop.org/0964-1726/22/i=10/a=105001?key=crossref.7fe9133a96d0b74e04e872cc0f6acbe2   DOI
13 Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Computat., 37(155), 141-158.   DOI
14 Mokashi, V.V., Qian, D. and Liu, Y. (2007), "A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics", Compos. Sci. Technol., 67(3), 530-540.   DOI
15 Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment", Compos. Struct., 106, 128-138.   DOI
16 Liu, T.T. and Wang, X. (2007), "Dynamic elastic modulus of single-walled carbon nanotubes in different thermal environments", Phys. Lett. A, 365(1), 144-148.   DOI
17 Mehar, K. and Panda, S.K. (2016), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. Available from: http://dx.doi.org/10.1016/j.compstruct.2016.02.038   DOI
18 Moradi-Dastjerdi, R. and Pourasghar, A. (2016), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by wavy carbon nanotube under an impact load", J. Vib. Control, 22(4), 1062-1075.   DOI
19 Moradi-Dastjerdi, R. (2016), "Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube", Struct. Eng. Mech., Int. J., 57(3), 441-456.   DOI
20 Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., Int. J., 22(2), 277-299.   DOI
21 Moradi-Dastjerdi, R. and Payganeh, G. (2017), "Thermoelastic Vibration Analysis of Functionally Graded Wavy Carbon Nanotube-Reinforced Cylinders", Polym. Compos. DOI: 10.1002/pc.24278   DOI
22 Pradhan, N.R., Duan, H., Liang, J. and Iannacchione, G.S. (2009), "The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes", Nanotechnology, 20(24), p. 245705.   DOI
23 Moradi-Dastjerdi, R., Foroutan, M. and Pourasghar, A. (2013), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method", Mater. Des., 44, 256-266. Available from: http://dx.doi.org/10.1016/j.matdes.2012.07.069   DOI
24 Moradi-Dastjerdi, R., Payganeh, G. and Tajdari, M. (2016), "Thermoelastic analysis of functionally graded cylinders reinforced by wavy CNT using a mesh-free method", Polym. Compos. DOI: 10.1002/pc.24183   DOI
25 Pourasghar, A., Moradi-Dastjerdi, R., Yas, M.H., Ghorbanpour Arani, A. and Kamarian, S. (2016), "Three-dimensional analysis of carbon nanotube-reinforced cylindrical shells with temperature-dependent properties under thermal environment", Polym. Compos. DOI: 10.1002/pc.24046   DOI
26 Sladek, J., Sladek, V., Krivacek, J. and Zhang, C. (2003a), "Local BIEM for transient heat conduction analysis in 3-D axisymmetric functionally graded solids", Computat. Mech., 32(3), 169-176.   DOI
27 Shariyat, M., Khaghani, M. and Lavasani, S.M.H. (2010), "Nonlinear thermoelasticity, vibration, and stress wave propagation analyses of thick FGM cylinders with temperaturedependent material properties", Eur. J. Mech. / A Solids, 29(3), 378-391. Available from: http://dx.doi.org/10.1016/j.euromechsol.2009.10.007   DOI
28 Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. Available from: http://dx.doi.org/10.1016/j.compstruct.2009.04.026   DOI
29 Shen, H.S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Methods Appl. Mech. Eng., 213, 196-205. Available from: http://dx.doi.org/10.1016/j.cma.2011.11.025   DOI
30 Singh, I.V., Tanaka, M. and Endo, M. (2007), "Meshless method for nonlinear heat conduction analysis of nano-composites", Heat Mass Transfer, 43(10), 1097-1106.   DOI
31 Sladek, J., Sladek, V. and Zhang, C. (2003b), "Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method", Computat. Mater. Sci., 28(3), 494-504.   DOI
32 Sladek, J., Sladek, V., Hellmich, C. and Eberhardsteiner, J. (2007), "Heat conduction analysis of 3-D axisymmetric and anisotropic FGM bodies by meshless local Petrov-Galerkin method", Computat. Mech., 39(3), 323-333.
33 Xing, M., Yu, J. and Wang, R. (2016), "Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids", Int. J. Thermal Sci., 104, 404-411. Available from: http://dx.doi.org/10.1016/j.ijthermalsci.2016.01.024   DOI
34 Di Blasi, C., Galgano, A. and Branca, C. (2013), "Modeling the thermal degradation of poly (methyl methacrylate)/carbon nanotube nanocomposites", Polym. Degrad. Stabil., 98(1), 266-275.   DOI
35 Zhu, R., Pan, E. and Roy, A. (2007), "Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites", Mater. Sci. Eng. A, 447(1), 51-57.   DOI
36 Alibeigloo, A. (2016), "Elasticity solution of functionally graded carbon nanotube-reinforced composite cylindrical panel subjected to thermo mechanical load", Compos. Part B, 87, 214-226. Available from: http://dx.doi.org/10.1016/j.compositesb.2015.09.060   DOI
37 Di Blasi, C. and Galgano, A. (2013), "Influences of properties and heating characteristics on the thermal decomposition of polymer/carbon nanotube nanocomposites", Fire Safety J., 59, 166-177.   DOI