• Title/Summary/Keyword: layer deposition

Search Result 2,816, Processing Time 0.037 seconds

Enhanced Stability of LiCoO2 Cathodes in Lithium-ion Batteries Using Surface Modification by Atomic Layer Deposition

  • Jung, Yoon-S.;Cavanagh, Andrew S.;Dillon, Anne C.;Groner, Markus D.;George, Steven M.;Lee, Se-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.61-65
    • /
    • 2010
  • Ultrathin atomic layer deposition (ALD) coatings were found to enhance the performance of lithium-ion batteries (LIBs). Previous studies have demonstrated that $LiCoO_2$ cathode powders coated with metal oxides with thicknesses of $\sim100-1000{\AA}$ grown using wet chemical techniques improved LIB performance. In this study, $LiCoO_2$ powders were coated with conformal $Al_2O_3$ ALD films with thicknesses of only $\sim3-4{\AA}$ established using 2 ALD cycles. The coated $LiCoO_2$ powders exhibited a capacity retention of 89% after 120 charge-discharge cycles in the 3.3~4.5 V (vs. $Li/Li^+$) range. In contrast, the bare $LiCoO_2$ powders displayed only a 45% capacity retention. This dramatic improvement may result from the ultrathin $Al_2O_3$ ALD film acting to minimize Co dissolution or to reduce surface electrolyte reactions.

Fabrication of Two-dimensional Photonic Crystal by Roll-to-Roll Nanoreplication (롤투롤 나노 복제 공정을 이용한 이차원 광결정 소자의 제작)

  • Kim, Young-Kyu;Byeon, Euihyeon;Jang, Ho-Young;Kim, Seok-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.16-22
    • /
    • 2013
  • A two-dimensional photonic crystal structure was investigated using a roll-to-roll nanoreplication and physical vapor deposition processes for the inexpensive enhanced fluorescence substrate which is not sensitive to the polarization directions of excitation light source. An 8 inch silicon master having nano dot array with a diameter of 200 nm, a height of 100 nm and a pitch of 400 nm was prepared by KrF laser scanning lithography and reactive ion etching processes. A flexible polymer mold was fabricated by flat type UV replication process and a deposition of 10 nm nickel layer as an anti-adhesion layer. A roll mold was prepared by warping the flexible polymer mold on an aluminum roll base and a roll-to-roll UV replication process was carried out using the roll mold. After the deposition of ~ 100 nm $TiO_2$ layer on the replicated nano dot array, a 2 dimensional photonic crystal structure was realized with a resonance wavelength of 635 nm for both p- and s-polarized light sources.

Development of Variable Deposition Manufacturing for Ethylene Vinyl Acetatecopolymer (EVA를 이용한 가변 용착 쾌속 조형 공정 개발)

  • 이상호;신보성;정준호;안동규;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.771-774
    • /
    • 2000
  • RP techniques have inherent disadvantages caused by their working principles: stair-stepped surface of parts due to layer-by-layer stacking of layers, low build speed caused by line-by-line solidification to finish one layer, and post processing to improve surface finish, etc. The objective of this study is to propose a new RP technique, variable deposition manufacturing (VDM), which can make up for the disadvantages of the existing RP techniques, and to develop an apparatus to implement the technique. The proposed process can greatly reduce the building time and improve the surface finish of parts generated. The experiments are carried out to obtain the range of temperature of molten material to maintain its fluidity and to investigate the effect of gas cooling on the preservation of the slopes. Based on the results, some simple shapes such as a line-shape. an S-shape, and a circle-shape were fabricated from Ethylene Vinyl Acetatecopolymer (EVA). In order to examine the applicability of VDM to more general shapes, a tensile specimen and a yo-yo shape were manufactured by the proposed RP method using EVA material as the first trial approach. The present basic study has shown the possibility of a practicable utilization of the proposed VDM process to prototyping of a general three-dimensional shape.

  • PDF

Improvement on Surface and Electrical Properties of Polymer Insulator Coated TiO2 Thin Film by Atomic Layer Deposition (원자층 증착장치에 의한 TiO2 박막 코팅된 폴리머 절연체의 표면 및 전기적 특성의 향상)

  • Kim, Nam-Hoon;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.440-444
    • /
    • 2016
  • Titanium oxide ($TiO_2$) thin films were synthesized on polymer insulator and Si substrates by atomic layer deposition (ALD) method. The surface and electrical properties of $TiO_2$ films synthesized at various ALD cycle numbers were investigated. The synthesized $TiO_2$ films exhibited higher contact angle and smooth surface. The contact angle of $TiO_2$ films was increased with the increase of ALD-cycle number. Also, the rms surface roughness of films was slightly rough with the increase of ALD-cycle number. The leakage current on $TiO_2$ film surface synthesized at various conditions were uniformed, and the values were decreased with the increase of ALD-cycle number. In the results, the performance of $TiO_2$ films for self-cleaning critically depended on a number of ALD-cycle.

The Electrical Properties of $Ta_2O_5$ Thin Films by Atomic Layer Deposition Method (원자층 증착 방법에 의한 $Ta_2O_5$ 박막의 전기적 특성)

  • Lee, Hyung-Seok;Chang, Jin-Min;Jang, Yong-Un;Lee, Seung-Bong;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.41-46
    • /
    • 2002
  • In this work, we studied electrical characteristics and leakage current mechanism of Au/$Ta_2O_5$/Si metal-oxide-semiconductor (MOS) devices. $Ta_2O_5$ thin film (63nm) was deposited by atomic layer deposition (ALD) method at temperature of $235^{\circ}C$. The structures of the $Ta_2O_5$ thin films were examined by X-Ray Diffraction (XRD). From XRD, the structure of $Ta_2O_5$ was single phase and orthorhombic. From capacitance-voltage (C-V) analysis, the dielectric constant was 19.4. The temperature dependence of current-voltage (I-V) characteristics of $Ta_2O_5$ thin film was studied from 300 to 423 K. In ohmic region (<0.5 MVcm${-1}$), the resistivity was $2.4056{\times}10^{14}({\Omega}cm)$ at 348 K. The Schottky emission is dominant in lower temperature range from 300 to 323 K and Poole-Frenkel emission dominant in higher temperature range from 348 to 423 K.

  • PDF

Electrical Characteristics on the Variation of Deposition Rate in Organic Layer of OLEDS (정공수송층 및 발광층의 증착속도에 따른 OLEDS의 전기적 특성에 관한 연구)

  • Yang, Jae-Hoon;Lee, Young-Hwan;Kim, Weong-Jong;Kim, Keui-Yeul;Yeon, Kyu-Ho;Kim, Tae-Wan;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.275-276
    • /
    • 2005
  • Organic Light Emitting Diodes(OLEDs) are attractive as alternative display components because of their relative merits of being self-emitting, having large intrinsic viewing angle and fast switching speed. But because of their relatively short history of development, much remains to be studied in terms of their basic device physics and design, manufacturing techniques, stability and so on. We invested electrical properties of N,N-diphenyl-N,N bis (3-methyphenyl)-1,1'-biphenyl-4,4'-diamine(TPD) and tris-8-hydroxyquinoline aluminum($Alq_3$) when their thicknesses were changed variedly from 3:7 to 7:3 of their thickness ratios. And we also studied properties of OLEDs depend on their deposition rate between 0.05$\sim$0.2 [nm/s].

  • PDF

Influence of $TiO_2$ Thin Film Thickness and Humidity on Toluene Adsorption and Desorption Behavior of Nanoporous $TiO_2/SiO_2$ Prepared by Atomic Layer Deposition (ALD)

  • Sim, Chae-Won;Seo, Hyun-Ook;Kim, Kwang-Dae;Park, Eun-Ji;Kim, Young-Dok;Lim, Dong-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.268-268
    • /
    • 2012
  • Adsorption and desorption of toluene from bare and $TiO_2$-coated silica with a mean pore size of 15 nm was studied using breakthrough curves and temperature programmed desorption. Thicknesses of $TiO_2$ films prepared by atomic layer deposition on silica were < 2 nm, and ~ 5 nm, respectively. For toluene adsorption, both dry and humid conditions were used. $TiO_2$-thin film significantly improved toluene adsorption capacity of silica under dry condition, whereas desorption of toluene from the surface as a consequence of displacement by water vapor was more pronounced for $TiO_2$-coated samples with respect to the result of bare ones. In the TPD experiments, silica with a thinner $TiO_2$ film (thickness < 2 nm) showed the highest reactivity for toluene oxidation to $CO_2$ in the absence and presence of water. We show that the toluene adsorption and oxidation reactivity of silica can be controlled by varying thickness of $TiO_2$ thin films.

  • PDF

Improving Interface Characteristics of Al2O3-Based Metal-Insulator-Semiconductor(MIS) Diodes Using H2O Prepulse Treatment by Atomic Layer Deposition

  • Kim, Hogyoung;Kim, Min Soo;Ryu, Sung Yeon;Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.364-368
    • /
    • 2017
  • We performed temperature dependent current-voltage (I-V) measurements to characterize the electrical properties of $Au/Al_2O_3/n-Ge$ metal-insulator-semiconductor (MIS) diodes prepared with and without $H_2O$ prepulse treatment by atomic layer deposition (ALD). By considering the thickness of the $Al_2O_3$ interlayer, the barrier height for the treated sample was found to be 0.61 eV, similar to those of Au/n-Ge Schottky diodes. The thermionic emission (TE) model with barrier inhomogeneity explained the final state of the treated sample well. Compared to the untreated sample, the treated sample was found to have improved diode characteristics for both forward and reverse bias conditions. These results were associated with the reduction of charge trapping and interface states near the $Ge/Al_2O_3$ interface.

Atmospheric Pressure Plasma를 이용한 Oxide Thin Film Transistor의 특성 개선 연구

  • Mun, Mu-Gyeom;Kim, Ga-Yeong;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.582-582
    • /
    • 2013
  • Oxide TFT (thin film transistor) active channel layer에 대한 저온 열처리 공정은 투명하고 flexibility을 기반으로하는 display 산업과 AMOLED (active matrix organic light emitting diode) 분야 등 다양한 분야에서 필요로 하는 기술로서 많은 연구가 이루어지고 있다. 과거 active layer는 ALD (atomic layer deposition), CVD (chemical vapor deposition), pulse laser deposition, radio frequency-dc (RF-dc) magnetron sputtering 등과 같은 고가의 진공 장비를 이용하여 증착 되어져 왔으나 현재에는 진공 장비 없이 spin-coating 후 열처리 하는 저가의 공정이 주로 연구되어 지고 있다. Flexible 기판들은 일반적인 OTFT (oxide thin films Transistor)에 적용되는 열처리 온도로 공정 진행시 열에 의한 기판의 손상이 발생한다. Flexible substrate의 열에 의한 기판 손상을 막기 위해 저온 열처리 공정이 연구되고 있지만 기존 열처리와 비교하여 소자의 특성 저하가 동반 되었다. 본 연구에서는 Si 기판위에 SiO2 (100)를 절연층으로 증착하고 그 위에 IZO (indium zinc oxide) solution을 spin-coating 한뒤 $250^{\circ}C$ 이하의 온도에서 열처리하였다. 저온 공정으로 인하여 소자의 특성 저하가 동반 되었으므로 소자의 저하된 특성 복원하고자 post-treatment로 고가의 진공장비가 필요 없고 roll-to roll system 적용이 수월한 remote-type의 APP (atmospheric pressure plasma) 처리를 하였다. Post-treatment로 APP를 이용하여 $250^{\circ}C$ 이하에서 소자에 적용 가능한 on/off ratio를 얻을 수 있었다.

  • PDF

Investigation of the Effects of ZnO Thin Film Deposition Methods on Inverted Polymer Solar Cells (다양한 박막 형성법을 사용한 ZnO 전자 추출층이 역구조 고분자 태양전지에 미치는 영향 연구)

  • Lee, Donggu;Noh, Seunguk;Sung, Myungmo;Lee, Changhee
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.59-62
    • /
    • 2013
  • We investigated the effects of ZnO thin film deposition methods on the performance of inverted polymer solar cells with a structure of ITO/ZnO/P3HT:PCBM/MoO3/Al. The ZnO thin films were deposited by various methods (spin coating of nanoparticles, sol-gel process, atomic layer deposition) and their morphology was analyzed by atomic force microscopy (AFM). The device with ZnO nanoparticle thin films showed the highest power conversion efficiency of 3 % with low series resistance and high shunt resistance. The superior performance of the device with the ZnO nanoparticle layer is attributed to better electron extraction capability.