DOI QR코드

DOI QR Code

Improving Interface Characteristics of Al2O3-Based Metal-Insulator-Semiconductor(MIS) Diodes Using H2O Prepulse Treatment by Atomic Layer Deposition

  • Kim, Hogyoung (Department of Visual Optics, Seoul National University of Science and Technology) ;
  • Kim, Min Soo (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ryu, Sung Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Choi, Byung Joon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • Received : 2017.05.18
  • Accepted : 2017.06.09
  • Published : 2017.07.27

Abstract

We performed temperature dependent current-voltage (I-V) measurements to characterize the electrical properties of $Au/Al_2O_3/n-Ge$ metal-insulator-semiconductor (MIS) diodes prepared with and without $H_2O$ prepulse treatment by atomic layer deposition (ALD). By considering the thickness of the $Al_2O_3$ interlayer, the barrier height for the treated sample was found to be 0.61 eV, similar to those of Au/n-Ge Schottky diodes. The thermionic emission (TE) model with barrier inhomogeneity explained the final state of the treated sample well. Compared to the untreated sample, the treated sample was found to have improved diode characteristics for both forward and reverse bias conditions. These results were associated with the reduction of charge trapping and interface states near the $Ge/Al_2O_3$ interface.

Keywords

References

  1. Y. Zhou, M. Ogawa, M. Bao, W. Han, R. Kawakami and K. Wang, Appl. Phys. Lett., 94, 242104 (2009). https://doi.org/10.1063/1.3157128
  2. B. Coss, C. Smith, W. Loh, P. Majhi, R. Wallace, J. Kim and R. Jammy, IEEE Electron Device Lett., 32, 862 (2011). https://doi.org/10.1109/LED.2011.2148091
  3. R. Lieten, S. Degroote, M. Kuijk and G. Borghs, Appl. Phys. Lett., 92, 022106 (2008). https://doi.org/10.1063/1.2831918
  4. T. Nishimura, K. Kita and A. Toriumi, Appl. Phys. Exp., 1, 051406 (2008). https://doi.org/10.1143/APEX.1.051406
  5. D. Lee, S. Raghunathan, R. Wilson, D. Nikonov, K. Saraswat and S. Wang, Appl. Phys. Lett., 96, 052514 (2010). https://doi.org/10.1063/1.3285163
  6. M. Kobayashi, A. Kinoshita, K. Saraswat, H. Wong and Y. Nishi, J. Appl. Phys., 105, 023702 (2009). https://doi.org/10.1063/1.3065990
  7. B. Tsui and M. Kao, Appl. Phys. Lett., 103, 032104 (2013). https://doi.org/10.1063/1.4813834
  8. T. Nishimura, K. Kita and A. Toriumi, Appl. Phys. Lett., 91, 123123 (2007). https://doi.org/10.1063/1.2789701
  9. J. Wager and J. Robertson, J. Appl. Phys., 109, 094501 (2011). https://doi.org/10.1063/1.3581159
  10. J. Hu, A. Nainani, Y. Sun, K. Saraswat and H. Wong, Appl. Phys. Lett., 99, 252104 (2011). https://doi.org/10.1063/1.3669414
  11. J. Lee, T. Kaufman-Osborn, W. Melitz, S. Lee and A. Kumme, Surf. Sci., 605, 1583 (2011). https://doi.org/10.1016/j.susc.2011.05.034
  12. L. Papagno, D. Frankel, Y. Chen, L. Caputi, J. Anderson and G. Lapeyre, Surf. Sci., 248, 343 (1991). https://doi.org/10.1016/0039-6028(91)91180-6
  13. J. Lee, T. Kaufman-Osborn, W. Melitz, S. Lee, A. Delabie, S. Sioncke, M. Caymax, G. Pourtois and A. Kummel, J. Chem. Phys., 135, 054705 (2011). https://doi.org/10.1063/1.3621672
  14. C. Lin, Y. Chen, C. Lee, H. Chang, W. Chang, H. Chang and C. Liu, J. Electrochem. Soc., 158, H128 (2011). https://doi.org/10.1149/1.3517173
  15. S. Swaminathan, Y. Oshima, M. Kelly and P. McIntyre, Appl. Phys. Lett., 95, 032907 (2009). https://doi.org/10.1063/1.3177195
  16. S. Zheng, W. Yang, Q. Sun, L. Chen, P. Zhou, P. Wang, D. Zhang and F. Xiao, Appl. Phys. Lett., 103, 261602 (2013). https://doi.org/10.1063/1.4857135
  17. D. Chi, R. Lee, S. Chua, S. Lee, S. Ashok and D. Kwong, J. Appl. Phys., 97, 113706 (2005). https://doi.org/10.1063/1.1923162
  18. H. Liu, P. Wang, D. Qi, X. Li, X. Han, C. Wang, S. Chen, C. Li and W. Huang, Appl. Phys. Lett., 105, 192103 (2014). https://doi.org/10.1063/1.4901421
  19. S. Sze, Physics of Semiconductor Devices, Wiley, New York, (1981).
  20. H. Von Wenckstern, S. Muller, G. Giehne, H. Hochmuth, M. Lorenz and, M. Grundmann, J. Electron. Mater., 39, 559 (2010). https://doi.org/10.1007/s11664-009-0974-1
  21. H. Kim, A. Sohn and D. Kim, Semicond. Sci. Technol., 27, 035010 (2012). https://doi.org/10.1088/0268-1242/27/3/035010
  22. O. Pakma, N. Serin, T. Serin and S. Altlndal, Semicond. Sci. Technol., 23, 105014 (2008). https://doi.org/10.1088/0268-1242/23/10/105014
  23. J. Osvald and Zs. J. Horvath, Appl. Surf. Sci., 234, 349 (2004). https://doi.org/10.1016/j.apsusc.2004.05.046
  24. R. Tung, Mater. Sci. Eng., R 35, 1 (2001).
  25. R. Garg, D. Misra and P. Swain, J. Electrochem. Soc., 153, F29 (2006). https://doi.org/10.1149/1.2140608
  26. J. Robertson and R. Wallace, Mater. Sci. Eng., R 88, 1 (2015). https://doi.org/10.1016/j.mser.2014.11.001
  27. J. Gu, Y. Liu, M. Xu, G. Celler, R. Gordon and P. Ye, Appl. Phys. Lett., 97, 012106 (2010). https://doi.org/10.1063/1.3462303