• Title/Summary/Keyword: lattices

Search Result 290, Processing Time 0.022 seconds

CHARACTERIZATIONS OF PARTITION LATTICES

  • Yoon, Young-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.237-242
    • /
    • 1994
  • One of the most well-known geometric lattices is a partition lattice. Every upper interval of a partition lattice is a partition lattice. The whitney numbers of a partition lattices are the Stirling numbers, and the characteristic polynomial is a falling factorial. The set of partitions with a single non-trivial block containing a fixed element is a Boolean sublattice of modular elements, so the partition lattice is supersolvable in the sense of Stanley [6]. In this paper, we rephrase four results due to Heller[1] and Murty [4] in terms of matroids and give several characterizations of partition lattices. Our notation and terminology follow those in [8,9]. To clarify our terminology, let G, be a finte geometric lattice. If S is the set of points (or rank-one flats) in G, the lattice structure of G induces the structure of a (combinatorial) geometry, also denoted by G, on S. The size vertical bar G vertical bar of the geometry G is the number of points in G. Let T be subset of S. The deletion of T from G is the geometry on the point set S/T obtained by restricting G to the subset S/T. The contraction G/T of G by T is the geometry induced by the geometric lattice [cl(T), over ^1] on the set S' of all flats in G covering cl(T). (Here, cl(T) is the closure of T, and over ^ 1 is the maximum of the lattice G.) Thus, by definition, the contraction of a geometry is always a geometry. A geometry which can be obtained from G by deletions and contractions is called a minor of G.

  • PDF

A NOVEL APPROACH TO FIND OPTIMIZED NEUTRON ENERGY GROUP STRUCTURE IN MOX THERMAL LATTICES USING SWARM INTELLIGENCE

  • Akbari, M.;Khoshahval, F.;Minuchehr, A.;Zolfaghari, A.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.951-960
    • /
    • 2013
  • Energy group structure has a significant effect on the results of multigroup transport calculations. It is known that $UO_2-PuO_2$ (MOX) is a recently developed fuel which consumes recycled plutonium. For such fuel which contains various resonant nuclides, the selection of energy group structure is more crucial comparing to the $UO_2$ fuels. In this paper, in order to improve the accuracy of the integral results in MOX thermal lattices calculated by WIMSD-5B code, a swarm intelligence method is employed to optimize the energy group structure of WIMS library. In this process, the NJOY code system is used to generate the 69 group cross sections of WIMS code for the specified energy structure. In addition, the multiplication factor and spectral indices are compared against the results of continuous energy MCNP-4C code for evaluating the energy group structure. Calculations performed in four different types of $H_2O$ moderated $UO_2-PuO_2$ (MOX) lattices show that the optimized energy structure obtains more accurate results in comparison with the WIMS original structure.

ON f-DERIVATIONS FROM SEMILATTICES TO LATTICES

  • Yon, Yong Ho;Kim, Kyung Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • In this paper, we introduce the notion of f-derivations from a semilattice S to a lattice L, as a generalization of derivation and f-derivation of lattices. Also, we define the simple f-derivation from S to L, and research the properties of them and the conditions for a lattice L to be distributive. Finally, we prove that a distributive lattice L is isomorphic to the class $SD_f(S,L)$ of all simple f-derivations on S to L for every ${\wedge}$-homomorphism $f:S{\rightarrow}L$ such that $f(x_0){\vee}f(y_0)=1$ for some $x_0,y_0{\in}S$, in particular, $$L{\simeq_-}=SD_f(S,L)$$ for every ${\wedge}$-homomorphism $f:S{\rightarrow}L$ such that $f(x_0)=1$ for some $x_0{\in}S$.

Near λ-lattices

  • Chajda, Ivan;Kolarik, M.
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.283-294
    • /
    • 2007
  • By a near ${\lambda}$-lattice is meant an upper ${\lambda}$-semilattice where is defined a parti binary operation $x{\Lambda}y$ with respect to the induced order whenever $x$, $y$ has a common lower bound. Alternatively, a near ${\lambda}$-lattice can be described as an algebra with one ternary operation satisfying nine simple conditions. Hence, the class of near ${\lambda}$-lattices is a quasivariety. A ${\lambda}$-semilattice $\mathcal{A}=(A;{\vee})$ is said to have sectional (antitone) involutions if for each $a{\in}A$ there exists an (antitone) involution on [$a$, 1], where 1 is the greatest element of $\mathcal{A}$. If this antitone involution is a complementation, $\mathcal{A}$ is called an ortho ${\lambda}$-semilattice. We characterize these near ${\lambda}$-lattices by certain identities.

  • PDF

A Property of the Weak Subalgebra Lattice for Algebras with Some Non-Equalities

  • Pioro, Konrad
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.2
    • /
    • pp.195-211
    • /
    • 2010
  • Let A be a locally finite total algebra of finite type such that $k^A(a_1,\cdots,a_n)\;{\neq}\;a_i$ ai for every operation $k^A$, elements $a_1,\cdots,a_n$ an and $1\;\leq\;i\;\leq\;n$. We show that the weak subalgebra lattice of A uniquely determines its (strong) subalgebra lattice. More precisely, for any algebra B of the same finite type, if the weak subalgebra lattices of A and B are isomorphic, then their subalgebra lattices are also isomorphic. Moreover, B is also total and locally finite.

An Approach for Error Detection in Ontologies Using Concept Lattices (개념격자를 이용한 온톨로지 오류검출기법)

  • Hwang, Suk-Hyung
    • Journal of Information Technology Services
    • /
    • v.7 no.3
    • /
    • pp.271-286
    • /
    • 2008
  • The core of the semantic web is ontology, which supports interoperability among semantic web applications and enables developer to reuse and share domain knowledge. It used a variety of fields such as Information Retrieval, E-commerce, Software Engineering, Artificial Intelligence and Bio-informatics. However, the reality is that various errors might be included in conceptual hierarchy when developing ontologies. Therefore, methodologies and supporting tools are essential to help the developer construct suitable ontologies for the given purposes and to detect and analyze errors in order to verify the inconsistency in the ontologies. In this paper we propose a new approach for ontology error detection based on the Concept Lattices of Formal Concept Analysis. By using the tool that we developed in this research, we can extract core elements from the source code of Ontology and then detect some structural errors based on the concept lattices. The results of this research can be helpful for ontology engineers to support error detection and construction of "well-defined" and "good" ontologies.

A Study of Multiple Dynamic Programming (Multiple dynamic programming에 관한 연구)

  • Young Moon park
    • 전기의세계
    • /
    • v.21 no.1
    • /
    • pp.13-16
    • /
    • 1972
  • Dynamic Programming is regarded as a very powerful tool for solving nonlinear optimization problem subject to a number of constraints of state and control variables, but has definite disadvantages that it requires much more computing time and consumes much more memory spaces than other technigues. In order to eliminate the above-mentioned demerits, this paper suggests a news technique called Multiple Dynamic Programming. The underlying principles are based on the concept of multiple passes that, instead of forming fin lattices in time-state plane as adopted in the conventional Dynamic Programming, the Multiple Dynamic Programming constitutes, at the first pass, coarse lattices in the feasible domain of time-state plane and determines the optimal state trajectory by the usual method of Dynamic Programming, and at the second pass again constitutes finer lattices in the narrower domain surrounded by both the upperand lower edges next to the lattice edges through which the first pass optimal trajectory passes and determines the more accurate optimal trajectory of state, and then at the third pass repeats the same processes, and so on. The suggested technique insures remarkable curtailment in amounts of computer memory spaces and conputing time, and its applicability has been demonstrated by a case study on the hydro-thermal power coordination in Korean power system.

  • PDF