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ON f-DERIVATIONS FROM SEMILATTICES TO LATTICES

Yong Ho Yon and Kyung Ho Kim

Abstract. In this paper, we introduce the notion of f -derivations from
a semilattice S to a lattice L, as a generalization of derivation and f -
derivation of lattices. Also, we define the simple f -derivation from S to
L, and research the properties of them and the conditions for a lattice
L to be distributive. Finally, we prove that a distributive lattice L is
isomorphic to the class SDf (S,L) of all simple f -derivations on S to L

for every ∧-homomorphism f : S → L such that f(x0) ∨ f(y0) = 1 for
some x0, y0 ∈ S, in particular, L ∼= SDf (S, L) for every ∧-homomorphism
f : S → L such that f(x0) = 1 for some x0 ∈ S.

1. Introduction

In some of the literature, authors investigated the relationship between the
notion of modularity or distributivity and the special operators on lattices such
as derivations, multipliers and linear maps.

The notion and some properties of derivations on lattices were introduced
in [10, 11]. Szász ([10, 11]) characterized the distributive lattices by multipliers
and derivations: a lattice is distributive if and only if the set of all meet-
multipliers and of all derivations coincide. In [5] it was shown that every
derivation on a lattice is a multiplier and every multiplier is a dual closure.
Pataki and Száz ([9]) gave a connection between non-expansive multipliers
and quasi-interior operators. Recently, in [12], the linear map on lattices was
introduced and modular lattices were characterized by multipliers and linear
map. The f -derivation, symmetric bi-derivation, symmetric f bi-derivation and
permuting tri-derivation on lattices were introduced and some results about
them were proved ([3, 4, 6, 7, 8]).

In this paper, we define an f -derivation from a semilattice S to a lattice L,
as a generalization of derivation and f -derivation of lattices, and study some
properties of f -derivations from S to L. In Section 4, we define the simple
f -derivation from S to L, and research the properties of simple f -derivations
and the conditions for a lattice L to be distributive. Also we prove that a
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distributive lattice L is isomorphic to the class SDf (S,L) of all simple f -
derivations on S to L for every ∧-homomorphism f : S → L such that f(x0)∨
f(y0) = 1 for some x0, y0 ∈ S, in particular, L ∼= SDf(S,L) for every ∧-
homomorphism f : S → L such that f(x0) = 1 for some x0 ∈ S.

2. Preliminaries

A semilattice is a partially ordered set (shortly, poset) S in which there exists
the greatest lower bound x ∧ y for every x, y ∈ L, a ∨-semilattice is a poset in
which there exists the least upper bound x ∨ y for every x, y ∈ L, and a lattice

is a poset L which is semilattice and ∨-semilattice.
A lattice L is distributive if x∧ (y∨z) = (x∧y)∨ (x∧z) for every x, y, z ∈ L.
A map f from a semilattice S to a semilattice T is said to be monotone

(resp. antitone) if it satisfies:

x ≤ y =⇒ f(x) ≤ f(y) (resp. x ≤ y =⇒ f(x) ≥ f(y)),

and is called a ∧-homomorphism if it satisfies: f(x∧ y) = f(x)∧ f(y) for every
x, y ∈ S. A map f from a lattice L to a lattice M is called a ∨-homomorphism

if it satisfies: f(x ∨ y) = f(x) ∨ f(y) for every x, y ∈ L, and is called a
homomorphism of lattices if f is a ∧-homomorphism and ∨-homomorphism. It
is well known that every ∧-homomorphism (or ∨-homomorphism) is monotone,
but the converse is not true.

Further discussions and symbols for lattice theory can be found in [1, 2].

3. f-derivations on semilattices

Throughout this paper, S denotes a semilattice and L a lattice unless oth-
erwise specified.

Let F (S,L) be the class of all maps from S to L. If we define a binary
relation ≤ on F (S,L) by

f ≤ g ⇐⇒ f(x) ≤ g(x) for every x ∈ S,

then (F (S,L),≤) is a poset. Moreover, if we define maps f ∨ g, f ∧ g : S → L

by

(f ∨ g)(x) = f(x) ∨ g(x) and (f ∧ g)(x) = f(x) ∧ g(x),

respectively, for every f, g ∈ F (S,L), then f ∨ g is the least upper bound and
f ∧ g is the greatest lower bound of f and g. Hence (F (S,L),∨,∧) is a lattice.

Definition 3.1. A map d : S → L is called an f -derivation if there exists a
map f : S → L such that

d(x ∧ y) = (d(x) ∧ f(y)) ∨ (f(x) ∧ d(y))

for every x, y ∈ S.
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Figure 1

Example 1. Let S = {0, a, b, c} be a semilattice and L = {0, u, v, 1} a lattice
with Hasse diagrams of Figure 1. If we define maps f and d from S to L by

f(x) =











0, if x = 0,

u, if x = a,

v, if x = b, c

and d(x) =











0, if x = 0, c

u, if x = a,

v, if x = b,

respectively, then d is an f -derivation from S to L.

Theorem 3.2. If f : S → L is a ∧-homomorphism, then f is an f -derivation.

Proof. Let f : S → L be a ∧-homomorphism. Then for any x, y ∈ S,

f(x ∧ y) = f(x) ∧ f(y) = (f(x) ∧ f(y)) ∨ (f(x) ∧ f(y)).

Hence f is an f -derivation. �

The converse of Theorem 3.2 is not true in general. For example, the f -
derivation d of Example 1 is not homomorphism because d(b∧ c) = d(b) = v 6=
0 = v ∧ 0 = d(b) ∧ d(c).

Lemma 3.3. Let f : S → L be a map and d : S → L an f -derivation. Then

the following properties hold.

(1) d(x) ≤ f(x) for all x ∈ S.

(2) d(x) ∧ d(y) ≤ d(x ∧ y) ≤ d(x) ∨ d(y) for all x, y ∈ S.

(3) d(x ∧ y) ≤ f(x) ∧ f(y) for all x, y ∈ S.

(4) If f(x) = 1 for every x ∈ S, then every f -derivation is antitone.

(5) If f is monotone and there is an element x0 ∈ S such that f(x0) =
d(x0), then f(x) = d(x) for all x ∈ S with x ≤ x0.

Proof. (1) Let x ∈ S. Then d(x) = d(x ∧ x) = (d(x) ∧ f(x)) ∨ (f(x) ∧ d(x)) =
f(x) ∧ d(x). Hence d(x) ≤ f(x) for all x ∈ S.

(2) Let x, y ∈ S. Then d(x) ≤ f(x) and d(y) ≤ f(y) by (1) of this lemma.
Hence we have

d(x) ∧ d(y) = (d(x) ∧ d(y)) ∨ (d(x) ∧ d(y))

≤ (d(x) ∧ f(y)) ∨ (f(x) ∧ d(y)) = d(x ∧ y).

Also since d(x) ∧ f(y) ≤ d(x) and f(x) ∧ d(y) ≤ d(y), we have d(x ∧ y) ≤
d(x) ∨ d(y).
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(3) Let x, y ∈ S. Then d(x) ≤ f(x) and d(y) ≤ f(y) by (1) of this lemma.
Hence we have

d(x ∧ y) = (d(x) ∧ f(y)) ∨ (f(x) ∧ d(y))

≤ (f(x) ∧ f(y)) ∨ (f(x) ∧ f(y)) = f(x) ∧ f(y).

(4) Let f(x) = 1 for every x ∈ S and x ≤ y. Then d(x) = d(x ∧ y) =
(d(x) ∧ f(y)) ∨ (f(x) ∧ d(y)) = d(x) ∨ d(y). Hence d(x) ≥ d(y).

(5) Let f be monotone and f(x0) = d(x0) for some x0 ∈ S, and let x ≤ x0.
Then f(x) ≤ f(x0), and d(x) ∧ d(x0) ≤ f(x) ∧ f(x0) by (1) of this lemma.
These imply

d(x) = d(x ∧ x0) = (d(x) ∧ f(x0)) ∨ (f(x) ∧ d(x0))

= (d(x) ∧ d(x0)) ∨ (f(x) ∧ f(x0)) = f(x) ∧ f(x0) = f(x). �

Lemma 3.4. Let f : S → L be a map and d : S → L an f -derivation. Then

the following are equivalent:

(1) d is monotone,

(2) d is a ∧-homomorphism.

Proof. Let d : S → L be a monotone f -derivation. Then d(x ∧ y) ≤ d(x) and
d(x ∧ y) ≤ d(y) for every x, y ∈ S. This implies d(x ∧ y) ≤ d(x) ∧ d(y). Hence
d(x ∧ y) = d(x) ∧ d(y) by Lemma 3.3(2).

The converse of this lemma is clear from the properties of ∧-homomorphism.
�

Theorem 3.5. Let f, d : S → L be maps. Then the following are equivalent:

(1) d is a monotone f -derivation,

(2) d(x ∧ y) = f(x) ∧ d(y) for every x, y ∈ S.

Proof. Suppose that d : S → L is a monotone f -derivation and x, y ∈ S. Then

f(x) ∧ d(y) ≤ (d(x) ∧ f(y)) ∨ (f(x) ∧ d(y)) = d(x ∧ y).

Also, since d is a ∧-homomorphism by Lemma 3.4 and d(x) ≤ f(x), we have

d(x ∧ y) = d(x) ∧ d(y) ≤ f(x) ∧ d(y).

Hence d(x ∧ y) = f(x) ∧ d(y).
Conversely, suppose that d(x ∧ y) = f(x) ∧ d(y) for every x, y ∈ S. Then

d(x ∧ y) = d(y ∧ x) = f(y) ∧ d(x) = d(x) ∧ f(y). This implies

d(x ∧ y) = d(x ∧ y) ∨ d(x ∧ y) = (d(x) ∧ f(y)) ∨ (f(x) ∧ d(y)).

Hence d is an f -derivation. Also, if x ≤ y, then d(x) = d(x∧y) = f(x)∧d(y) ≤
d(y). So d is monotone. �

For any f -derivations d1 and d2, d1 ∧ d2 is not f -derivation in general, as
the following example shows.
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Figure 2

Example 2. Let S = {0, a, b} be a semilattice and L = {0, u, v, 1} a lattice
with Hasse diagrams given by Figure 2. Let f : S → L be a map given by
f(x) = 1 for all x ∈ S. If we define maps d1, d2 : S → L by

d1(x) =

{

0, if x = a

u, if x = 0, b
and d2(x) =

{

0, if x = b

u, if x = 0, a,

respectively, then d1 and d2 are f -derivations, but d1∧d2 is not an f -derivation,
because (d1 ∧ d2)(a ∧ b) = u 6= 0 = ((d1 ∧ d2)(a) ∧ f(b)) ∨ (f(a)∧ (d1 ∧ d2)(b)).

Theorem 3.6. Let f : S → L be a map. Then the class MDf(S,L) of all

monotone f -derivations from S to L is a subsemilattice of F (S,L).

Proof. Let d1 and d2 be monotone f -derivations from S to L. Then by Theorem
3.5, we have

(d1 ∧ d2)(x ∧ y) = d1(x ∧ y) ∧ d2(x ∧ y) = (f(x) ∧ d1(y)) ∧ (f(x) ∧ d2(y))

= f(x) ∧ (d1(y) ∧ d2(y)) = f(x) ∧ (d1 ∧ d2)(y)

for every x, y ∈ S. This implies that d1 ∧ d2 is a monotone f -derivation by
Theorem 3.5. Hence MDf (S,L) is a subsemilattice of F (S,L). �

The subsemilattice MDf(S,L) of F (S,L) is not a ∨-subsemilattice in gen-
eral, as the following example show.

Example 3. Let S = {0, a, b} be a semilattice and L = {0, u, v, w, 1} a lattice
with Hasse diagrams given by Figure 3. If we define maps f, d1, d2 : S → L by
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f(x) =

{

w, if x = 0, a

1, if x = b,
d1(x) =

{

0, if x = 0, a

u, if x = b,
d2(x) =

{

0, if x = 0, a

v, if x = b,
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respectively, then d1 and d2 are monotone f -derivations, but d1 ∨ d2 is not
f -derivation, because (d1 ∨ d2)(a∧ b) = 0 6= w = ((d1 ∨ d2)(a)∧ f(b))∨ (f(a)∧
(d1 ∨ d2)(b)).

Theorem 3.7. Let f : S → L be a map. If L is distributive, then MDf (S,L)
is a sublattice of F (S,L).

Proof. Suppose that L is distributive and d1, d2 ∈ MDf (S,L). Then for any
x, y ∈ S, we have

(d1 ∨ d2)(x ∧ y) = d1(x ∧ y) ∨ d2(x ∧ y)

= (f(x) ∧ d1(y)) ∨ (f(x) ∧ d2(y)) (by Theorem 3.5)

= f(x) ∧ (d1(y) ∨ d2(y)) (by distributivity of L)

= f(x) ∧ (d1 ∨ d2)(y).

This implies that d1 ∨ d2 is a monotone f -derivation by Theorem 3.5. Hence
MDf(S,L) is ∨-subsemilattice of F (S,L), and MDf(S,L) is a sublattice of
F (S,L) by Theorem 3.6. �

4. Simple f-derivation

Lemma 4.1. Let f : S → L be a ∧-homomorphism and u ∈ L. If we define a

map fu : S → L by

fu(x) = f(x) ∧ u

for each x ∈ S, then fu is an f -derivation from S to L.

Proof. Suppose that f : S → L is a ∧-homomorphism and x, y ∈ S. Then

fu(x ∧ y) = f(x ∧ y) ∧ u = (f(x) ∧ f(y)) ∧ u

= ((f(x) ∧ f(y)) ∧ u) ∨ ((f(x) ∧ f(y)) ∧ u)

= ((f(x) ∧ u) ∧ f(y)) ∨ (f(x) ∧ (f(y) ∧ u))

= (fu(x) ∧ f(y)) ∨ (f(x) ∧ fu(y)).

Hence fu is an f -derivation. �

For each u ∈ L, the f -derivation fu in Lemma 4.1 is called a simple f -

derivation from S to L.

Proposition 4.2. Let f : S → L be a ∧-homomorphism. Then the following

properties hold.

(1) The ∧-homomorphism f is the greatest element in MDf(S,L).
(2) Every simple f -derivation is monotone.

(3) If S has the greatest element 1, then every monotone f -derivation is a

simple f -derivation.

Proof. (1) Let f : S → L be a ∧-homomorphism. Then f is monotone, and it
is an f -derivation by Theorem 3.2. Also, d ≤ f for every d ∈ MDf(S,L) by
Lemma 3.3(1). Hence f is the greatest element in MDf(S,L).
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(2) Let x ≤ y. Since f is a ∧-homomorphism, f is monotone. This implies
f(x) ≤ f(y), and

fu(x) = f(x) ∧ u ≤ f(y) ∧ u = fu(y).

Hence fu is monotone.
(3) Suppose that S has the greatest element 1. If d is a monotone f -

derivation, then by Theorem 3.5, d(x) = d(x ∧ 1) = f(x) ∧ d(1) = fd(1)(x)
for every x ∈ S. Hence d is a simple f -derivation fd(1). �

Let SDf (S,L) be the class of all simple f -derivations with respect to a ∧-
homomorphism f : S → L. Then SDf(S,L) ⊆ MDf(S,L) ⊆ F (S,L). In
particular, if S has the greatest element 1, then SDf (S,L) = MDf (S,L) by
Proposition 4.2.

Theorem 4.3. Let f : S → L be a ∧-homomorphism. Then SDf(S,L) is a

subsemilattice of F (S,L) with fu ∧ fv = fu∧v.

Proof. Let fu, fv ∈ SDf (S,L). Then we have

(fu ∧ fv)(x) = fu(x) ∧ fv(x) = (f(x) ∧ u) ∧ (f(x) ∧ v)

= f(x) ∧ (u ∧ v) = fu∧v(x).

This implies fu ∧ fv = fu∧v ∈ SDf(S,L). Hence SDf (S,L) is a subsemilattice
of F (S,L). �

The subsemilattice SDf(S,L) of F (S,L) is not ∨-subsemilattice in general.
In Example 3, two derivation d1 and d2 are simple f -derivations with d1 = fu
and d2 = fv, respectively, but d1 ∨ d2 is not f -derivation.

Theorem 4.4. Let f : S → L be a ∧-homomorphism. If L is distributive, then

SDf(S,L) is a sublattice of F (S,L) with fu ∨ fv = fu∨v and fu ∧ fv = fu∧v

for every u, v ∈ L.

Proof. Suppose that L be distributive and fu, fv ∈ SDf(S,L). Then for any
x ∈ S, we have

(fu ∨ fv)(x) = fu(x) ∨ fv(x) = (f(x) ∧ u) ∨ (f(x) ∧ v)

= f(x) ∧ (u ∨ v) = fu∨v(x).

This implies fu∨fv=fu∨v ∈ SDf (S,L). Hence SDf (S,L) is a ∨-subsemilattice
and it is sublattice of F (S,L) by Theorem 4.3 �

Let f : S → L be a ∧-homomorphism. We define a map φ : L → F (S,L) by

φ(u) = fu

for each u ∈ L. Also, we define a subset D(L) of a lattice L as following.

D(L) = {u ∈ L | u ∧ (v ∨ w) = (u ∧ v) ∨ (u ∧ w) for all v, w ∈ L}.

If D(L) is a sublattice of L, then D(L) is distributive. In particular, L is
distributive if and only if D(L) = L.
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Lemma 4.5. If f : S → L be a ∧-homomorphism, then the map φ : L →
F (S,L) is a ∧-homomorphism.

Proof. Let u, v ∈ L. Then for every x ∈ S,

fu∧v(x) = f(x) ∧ (u ∧ v) = (f(x) ∧ u) ∧ (f(x) ∧ v)

= fu(x) ∧ fv(x) = (fu ∧ fv)(x).

Hence φ(u∧v) = fu∧v = fu∧fv = φ(u)∧φ(v), and φ is a ∧-homomorphism. �

Theorem 4.6. Let f : S → L be a ∧-homomorphism. Then the following are

equivalent:

(1) φ : L → F (S,L) is a ∨-homomorphism.

(2) SDf(S,L) is a ∨-subsemilattice of F (S,L) with fu ∨ fv = fu∨v for

every u, v ∈ L.

(3) Imf ⊆ D(L).

Proof. (1)⇒(2) Suppose that φ : L → F (S,L) is a ∨-homomorphism. Then it
is clear that SDf(S,L) = Imφ is a ∨-subsemilattice of F (S,L), and for every
u, v ∈ L,

fu ∨ fv = φ(u) ∨ φ(v) = φ(u ∨ v) = fu∨v.

(2)⇒(3) Suppose that SDf(S,L) is a ∨-subsemilattice of F (S,L) with fu ∨
fv = fu∨v for every u, v ∈ L. If f(x) ∈ Imf , then

f(x) ∧ (v ∨ w) = fv∨w(x) = (fv ∨ fw)(x)

= fv(x) ∨ fw(x) = (f(x) ∧ v) ∨ (f(x) ∧ w)

for every v, w ∈ L. This implies f(x) ∈ D(L). Hence Imf ⊆ D(L).
(3)⇒(1) Suppose that Imf ⊆ D(L) and u, v ∈ L. Since f(x) ∈ D(L) for

every x ∈ S, we have

fu∨v(x) = f(x) ∧ (u ∨ v) = (f(x) ∧ u) ∨ (f(x) ∧ v)

= fu(x) ∨ fv(x) = (fu ∨ fv)(x)

for every x ∈ S. Hence φ(u ∨ v) = fu∨v = fu ∨ fv = φ(u) ∨ φ(v), and φ is a
∨-homomorphism. �

Corollary 4.7. Let f : S → L be a surjective ∧-homomorphism. Then the

following are equivalent:

(1) φ : L → F (S,L) is a ∨-homomorphism.

(2) SDf(S,L) is a ∨-subsemilattice of F (S,L) with fu ∨ fv = fu∨v for

every u, v ∈ L.

(3) L is distributive.

Proof. Since f : S → L is surjective, L = Imf ⊆ D(L) in Theorem 4.6(3), i.e.,
L = D(L), and L is distributive. �

In Theorem 4.6 and Corollary 4.7, the map φ : L → F (S,L) is a homomor-
phism of lattices and SDf (S,L) is a sublattice of F (S,L) by Lemma 4.5 and
Theorem 4.3.
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Theorem 4.8. Let L be a lattice with the greatest element 1 and f : S → L

a ∧-homomorphism. If Imf ⊆ D(L) and f(x0) = 1 for some x0 ∈ S, then

SDf(S,L) is isomorphic to L.

Proof. Suppose that Imf ⊆ D(L) and f(x0) = 1 for some x0 ∈ S. Then
φ : L → F (S,L) is a homomorphism of lattices by Lemma 4.5 and Theorem
4.6. If φ(u) = fu = fv = φ(v), then

u = 1 ∧ u = f(x0) ∧ u = fu(x0) = fv(x0) = f(x0) ∧ v = 1 ∧ v = v.

Hence φ is one-to-one, and L is isomorphic to Imφ = SDf(S,L). �

Theorem 4.9. Let L be a distributive lattice with the greatest element 1 and

f : S → L a ∧-homomorphism. If f(x0) ∨ f(y0) = 1 for some x0, y0 ∈ S, then

SDf(S,L) is isomorphic to L.

Proof. Suppose that L is distributive and f(x0)∨f(y0) = 1 for some x0, y0 ∈ S.
Then φ : L → F (S,L) is a homomorphism of lattices by Lemma 4.5 and
Corollary 4.7. If φ(u) = fu = fv = φ(v), then we have

u = 1 ∧ u = (f(x0) ∨ f(y0)) ∧ u = (f(x0) ∧ u) ∨ (f(y0) ∧ u)

= fu(x0) ∨ fu(y0) = fv(x0) ∨ fv(y0) = (f(x0) ∧ v) ∨ (f(y0) ∧ v)

= (f(x0) ∨ f(y0)) ∧ v = 1 ∧ v = v.

Hence φ is one-to-one, and L is isomorphic to Imφ = SDf(S,L). �

Corollary 4.10. Let L be a distributive lattice with the greatest element 1 and

f : S → L a ∧-homomorphism. If f(x0) = 1 for some x0 ∈ S, then SDf (S,L)
is isomorphic to L.

Proof. If L is distributive, then L = D(L). This implies Imf ⊆ L = D(L).
Hence SDf(S,L) is isomorphic to L by Theorem 4.8. �

Example 4. In Example 3, there are three ∧-homomorphisms from the semi-
lattice S = {0, a, b} to the lattice L = {0, u, v, w, 1} such that Imf ⊆ D(L) =
{0, 1} and f(x0) = 1 for some x0 ∈ S;

f1(x) =

{

0, if x = 0, a

1, if x = b,
f2(x) =

{

0, if x = 0, b

1, if x = a,
f3(x) = 1 for every x ∈ S.

By Theorem 4.8, SDfi(S,L) ∼= L for every i = 1, 2, 3. The ∧-homomorphism
f : S → L of Example 3 does not satisfy the property Imf ⊆ D(L), and
φ : L → SDf (S,L) is not homomorphism of lattice, because φ(u∨ v) = φ(1) =
f1 6= fu ∨ fv = φ(u) ∨ φ(v).

In Example 1, the lattice L = {0, u, v, 1} is distributive and f(a) ∨ f(b) =
u ∨ v = 1. Hence SDf(S,L) ∼= L by Theorem 4.9.

In Example 2, the lattice L = {0, u, v, 1} is distributive and f(x) = 1 for
every x ∈ S. Hence SDf (S,L) ∼= L by Corollary 4.10. In this example, there
are seven ∧-homomorphisms from S to L such that f(x0) = 1 for some x0 ∈ S.
For each f of them, SDf(S,L) ∼= L.
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