KYUNGPOOK Math. J. 47(2007), 283-294

Near λ -lattices

IVAN CHAJDA and M. KOLAŘÍK

Department of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 779 00 Olomouc, Czech Republic e-mail: chajda@inf.upol.cz and kolarik@inf.upol.cz

ABSTRACT. By a near λ -lattice is meant an upper λ -semilattice where is defined a partial binary operation $x \wedge y$ with respect to the induced order whenever x, y has a common lower bound. Alternatively, a near λ -lattice can be described as an algebra with one ternary operation satisfying nine simple conditions. Hence, the class of near λ -lattices is a quasivariety. A λ -semilattice $\mathcal{A} = (A; \vee)$ is said to have sectional (antitone) involutions if for each $a \in A$ there exists an (antitone) involution on [a, 1], where 1 is the greatest element of \mathcal{A} . If this antitone involution is a complementation, \mathcal{A} is called an ortho λ -semilattice. We characterize these near λ -lattices by certain identities.

Nearlattices were studied (under different names) by several authors. Some essential results are collected in [3] where is given also a characterization of nearlattices as algebras with one ternary operation. The concept of a lattice was generalized by V. Snášel [5] by dropping out associativity. The resulting algebra $\mathcal{A} = (A; \lor, \land)$ satisfying idempotency for \lor, \land , commutativity for \lor, \land , the absorption laws and the so-called skew associativity

 $(SA) \qquad x \lor ((x \lor y) \lor z) = (x \lor y) \lor z, \quad x \land ((x \land y) \land z) = (x \land y) \land z$

is called a λ -lattice. Applying this concept instead of a lattice in the definition of nearlattice, we obtain a near λ -lattice. This is the subject of our next considerations.

In the sequel, we equip these near λ -lattices with the so-called sectional involutions to obtain structures analogous to ortholattices (see [2]). They can be characterized by a new binary operation which is derived "as implication" similarly as it was done by J. C. Abbott [1] for boolean near-lattices.

Definition 1. An upper λ -semilattice (or a commutative directoid in [4]) is an algebra $\mathcal{A} = (A; \vee)$ of type (2) satisfying the identities

(A1) $x \lor x = x$ (*idempotency*);

(A2) $x \lor y = y \lor x$ (commutativity);

Received February 7, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 06A12, 06C15, 06F35.

Key words and phrases: near λ -lattice, λ -semilattice, ortho λ -lattice, ortho λ -semilattice.

(A3) $x \lor ((x \lor y) \lor z) = (x \lor y) \lor z$ (skew associativity).

Lemma 1. Let $(A; \lor)$ be an upper λ -semilattice. If we define

 $x \leq y$ if and only if $x \vee y = y$,

then the relation \leq is a partial order on A.

Proof. Clearly $x \leq x$ for each $x \in A$ by (A1). Further, if $x \leq y$ and $y \leq x$, then $y = x \lor y = y \lor x = x$ by (A2). Finally, if $x \leq y, y \leq z$, then, by (A3),

$$x \lor z = x \lor (y \lor z) = x \lor ((x \lor y) \lor z) = (x \lor y) \lor z = y \lor z = z,$$

thus $x \leq z$.

Let $(A; \leq)$ be an ordered set. Denote by

 $U(a,b) = \{x \in A; a \le x \text{ and } b \le x\} \text{ and}$ $L(a,b) = \{x \in A; x \le a \text{ and } x \le b\} \text{ for } a, b \in A.$

Definition 2. A partial binary operation \wedge on an upper λ -semilattice $\mathcal{A} = (A; \vee)$ will be called the **associated operation**, if the following properties hold for all $x, y, z \in A$:

- i) $x \wedge y$ is defined if and only if $L(x, y) \neq \emptyset$ and
 - a) $x \wedge y \in L(x,y);$
 - b) $x \leq y$ implies $x \wedge y = x$;
- ii) If $x \wedge y$ is defined then $y \wedge x$ and $x \vee (x \wedge y)$ are defined and
 - a) $x \wedge y = y \wedge x;$
 - b) $x \lor (x \land y) = x;$
- iii) If $(x \wedge y) \wedge z$ is defined then $x \wedge ((x \wedge y) \wedge z)$ is defined and $x \wedge ((x \wedge y) \wedge z) = (x \wedge y) \wedge z$.

Remark 1. It is clear from the definition that the associated operation \wedge is idempotent, i.e., for each $x \in A$, $x \wedge x$ exists and $x \wedge x = x$. Further, the associated operation \wedge satisfies the identity $x \wedge (x \vee y) = x$, since $x \leq x \vee y$.

Definition 3. An upper λ -semilattice $\mathcal{A} = (A; \vee)$ is called a **near** λ -lattice, if there is defined the associated operation \wedge on A.

Remark 2. If $\mathcal{A} = (A; \vee)$ is a near λ -lattice then it does not mean that for each $a \in A$ the interval [a) is a λ -lattice, see e.g. the following example:

Example 1. Consider the ordered set $(\{a, b, c, d, 1\}, \leq)$ as shown in Fig. 1. If

we define $a \lor b = c, c \lor d = 1$ and trivially for comparable elements then $\mathcal{A} = (\{a, b, c, d, 1\}, \lor)$ is an upper λ -semilattice. To convert it into a near λ -lattice, we have two choices for non-comparable elements, namely $c \land d = a$ or $c \land d = b$. Let e.g. $c \land d = b$ and $x \land y = x$ whenever $x \leq y$. Then \mathcal{A} is a near λ -lattice but the interval $[a, 1] = \{a, c, d, 1\}$ is not a λ -lattice because $c \land d$ is not defined in it. On the contrary [b, 1] is a λ -lattice as one can easily verify.

Fig. 1

Now, we show that near λ -lattices can be considered equivalently as algebras with one ternary operation.

Theorem 1. Let $\mathcal{M} = (M; \vee)$ be a near λ -lattice and \wedge its associated operation. Define a ternary operation $w(x, y, z) = (x \vee z) \wedge (y \vee z)$ on M. Then w(x, y, z) is an everywhere defined operation and the following conditions are satisfied :

- (C) for every $p, q \in L(x, y)$, w(x, y, p) = w(x, y, q);
- (P1) w(x, y, x) = x;
- (P2) w(x, x, y) = w(y, y, x);
- (P3) w(x, x, w(w(x, x, y), w(x, x, y), z)) = w(w(x, x, y), w(x, x, y), z);
- (P4) w(x, y, z) = w(y, x, z);
- (P5) w(x, w(w(x, y, z), v, z), z) = w(w(x, y, z), v, z);
- (P6) w(x, w(y, y, x), z) = w(x, x, z);
- (P7) w(w(x, x, z), w(x, x, z), w(y, x, z)) = w(x, x, z);
- (P8) w(w(x, x, z), w(y, y, z), z) = w(x, y, z).

Proof. Clearly $z \leq x \lor z$, $z \leq y \lor z$, hence $L(x \lor z, y \lor z) \neq \emptyset$, thus $(x \lor z) \land (y \lor z)$ is an everywhere defined operation on M. To prove the condition (C) we suppose $p, q \in L(x, y)$. Then $L(x, y) \neq \emptyset$ and hence $x \land y$ is defined. This yields

$$w(x, y, p) = (x \lor p) \land (y \lor p) = x \land y = (x \lor q) \land (y \lor q) = w(x, y, q).$$

Prove the identities (P1)-(P8):

(P1) $w(x, y, x) = (x \lor x) \land (y \lor x) = x \land (y \lor x) = x;$

(P2)

$$\begin{aligned} w(x,x,y) &= (x \lor y) \land (x \lor y) = x \lor y \\ &= y \lor x = (y \lor x) \land (y \lor x) \\ &= w(y,y,x); \end{aligned}$$

(P3)

$$w(x, x, w(w(x, x, y), w(x, x, y), z)) = x \lor w(w(x, x, y), w(x, x, y), z)$$

$$= x \lor (w(x, x, y) \lor z)$$

$$= x \lor ((x \lor y) \lor z)$$

$$= w(x, x, y) \lor z$$

$$= w(w(x, x, y), w(x, x, y), z);$$

(P4)
$$w(x,y,z) = (x \lor z) \land (y \lor z) = (y \lor z) \land (x \lor z) = w(y,x,z);$$

(P5)

(P6)

$$w(x, w(y, y, x), z) = w(x, y \lor x, z) = (x \lor z) \land ((y \lor x) \lor z)$$

= $(x \lor z) \land (y \lor (x \lor z)) = x \lor z$
= $w(x, x, z);$

(P7)

$$\begin{aligned} w(w(x,x,z),w(x,x,z),w(y,x,z)) &= w(x \lor z, x \lor z, w(y,x,z)) \\ &= (x \lor z) \lor w(y,x,z) \\ &= (x \lor z) \lor ((y \lor z) \land (x \lor z)) \\ &= x \lor z = w(x,x,z); \end{aligned}$$

Near λ -lattices

(P8)

$$\begin{split} w(w(x,x,z),w(y,y,z),z) &= w(x \lor z, y \lor z, z) \\ &= ((x \lor z) \lor z) \land ((y \lor z) \lor z) \\ &= (x \lor z) \land (y \lor z) \\ &= w(x,y,z). \end{split}$$

We are going to prove the converse. For this, let us state the following

Lemma 2. Let $\mathcal{M} = (M; w)$ be an algebra of type (3) satisfying the identities (P1), (P2), and (P3). Define $x \lor y = w(x, x, y)$. Then $(M; \lor)$ is an upper λ -semilattice. *Proof.* Idempotency: by (P1), we have $x \lor x = w(x, x, x) = x$.

Commutativity : by (P2), $x \lor y = w(x, x, y) = w(y, y, x) = y \lor x$. Skew associativity : applying (P3), we infer

$$\begin{aligned} x \lor ((x \lor y) \lor z) &= w(x, x, (x \lor y) \lor z) \\ &= w(x, x, w(x \lor y, x \lor y, z)) \\ &= w(x, x, w(w(x, x, y), w(x, x, y), z)) \\ &= w(w(x, x, y), w(x, x, y), z) \\ &= w(x \lor y, x \lor y, z) = (x \lor y) \lor z. \end{aligned}$$

Due to Lemma 2, we can introduce an order \leq on an algebra $\mathcal{M} = (M; w)$ as follows :

$$x \le y$$
 if and only if $w(x, x, y) = y$.

This order will be called the **induced order** of \mathcal{M} .

Theorem 2. Let $\mathcal{M} = (M; w)$ be an algebra of type (3) satisfying (C), (P1) – (P7), and let \leq be the induced order. Then for $x \lor y = w(x, x, y)$, $(M; \lor)$ is an upper λ -semilattice. For $x, y, p \in M$, such that $p \leq x, y$ we define

$$x \wedge y = w(x, y, p).$$

Then $(M; \vee)$ is a near λ -lattice where \wedge is the associated operation.

If $\mathcal{M} = (M; w)$ satisfies moreover (P8), then the correspondence between near λ -lattices and algebras (M; w) satisfying (C), (P1) – (P8) is one-to-one.

Proof. By Lemma 2, $(M; \vee)$ is an upper λ -semilattice. Further, for each $x \in M$ we have $x \in L(x, x)$ and hence

$$x \wedge x = w(x, x, x) = x \vee x = x$$

Suppose now $L(x, y) \neq \emptyset$, i.e., there exists $p \in L(x, y)$. By (P4) we get

$$x \wedge y = w(x, y, p) = w(y, x, p) = y \wedge x.$$

287

Since $(x \wedge y) \wedge z$ is defined, we have $L(L(x, y), z) \neq \emptyset$, and thus exist p, q such that $p \in L(x, y)$ and $q \in L(L(x, y), z)$. Hence also $q \in L(x, y)$, by (C), w(x, y, p) = w(x, y, q), and by (P5)

$$\begin{aligned} x \wedge ((x \wedge y) \wedge z) &= x \wedge (w(x, y, p) \wedge z) = x \wedge (w(w(x, y, p), z, q)) \\ &= w(x, w(w(x, y, p), z, q), q) = w(w(x, y, q), z, q) \\ &= (w(x, y, q) \lor q) \wedge (z \lor q) \\ &= (((x \lor q) \wedge (y \lor q)) \lor q) \wedge (z \lor q) \\ &= ((x \lor q) \wedge (y \lor q)) \wedge (z \lor q) \\ &= (x \land y) \wedge z. \end{aligned}$$

It remains to show the absorption laws. Since $x \leq y \lor x$, we have $x \in L(x, y \lor x)$ and hence $x \land (y \lor x)$ is defined and, by (P6), we have

$$\begin{array}{lll} x \wedge (y \vee x) & = & x \wedge w(y,y,x) = w(x,w(y,y,x),x) \\ & = & w(x,x,x) = x. \end{array}$$

To prove the second absorption law, suppose $L(x, y) \neq \emptyset$ and $p \in L(x, y)$. Then $y \wedge x$ is defined, and applying (P7),

$$\begin{aligned} x \lor (y \land x) &= x \lor w(y, x, p) = (x \lor p) \lor w(y, x, p) \\ &= w(x, x, p) \lor w(y, x, p) \\ &= w(w(x, x, p), w(x, x, p), w(y, x, p)) \\ &= w(x, x, p) = x \land x = x. \end{aligned}$$

Hence, (M, \vee) is a near λ -lattice.

If (M; w) is an algebra of type (3) satisfying (C), (P1) – (P8), $x \lor y := w(x, x, y)$ for all $x, y \in M$ and $x \land y := w(x, y, p)$ for all $p \in M$ and all $x, y \in M$ with $x, y \ge p$ then $(x \lor z) \land (y \lor z) = w(w(x, x, z), w(y, y, z), z) = w(x, y, z)$ for all $x, y, z \in M$.

Thus the correspondence between near λ -lattices and induced algebras $\mathcal{M} = (M; w)$ is one-to-one.

Example 2. Let $\mathcal{M} = (M; \vee)$ be a near λ -lattice depicted in Fig. 2, such that $x \wedge y = p_2, p_1 \wedge p_2 = p_3, p_1 \vee p_2 = x$ and $p_3 \vee p_4 = p_2$. Then $L(x, y) = \{p_1, p_2, p_3, p_4\}$ and, by condition (C) from Theorem 1, we have :

$$w(x, y, p_i) = w(x, y, p_j)$$
 for all $i, j \in \{1, 2, 3, 4\}.$

Note that $p_3 \wedge p_4$ is not defined, because $L(p_3, p_4) = \emptyset$.

Remark 3. Because of Theorems 1 and 2, near λ -lattices can be alternatively considered as algebras $\mathcal{M} = (M; w)$ of type (3) satisfying (C), (P1) – (P8) and \leq will be referred to as the induced order of $\mathcal{M} = (M; w)$.

Since (P1) - (P8) are identities and (C) is a quasi-identity, we have

Corollary. The class of all near λ -lattices (considered as ternary algebras) is a quasivariety \mathcal{N} .

For varieties which are subquasivarieties of \mathcal{N} , we can prove

Theorem 3. Every variety of near λ -lattices is congruence distributive.

 $\begin{array}{l} Proof. \text{ Take } n=4, \text{ and } t_0(x,y,z)=x, t_4(x,y,z)=z \text{ and } t_1(x,y,z)=w(z,y,x), \\ t_2(x,y,z)=w(x,x,z), t_3(x,y,z)=w(x,y,z). \\ \text{ Then } t_0(x,y,x)=x \\ t_1(x,y,x)=w(x,y,x)=x \\ t_2(x,y,x)=w(x,x,x)=x \\ t_3(x,y,x)=w(x,y,x)=x \\ t_4(x,y,x)=x \\ i \text{ even: } t_0(x,x,y)=x=w(x,y,x)=w(y,x,x)=t_1(x,x,y) \\ t_2(x,x,y)=w(x,x,y)=t_3(x,x,y) \\ i \text{ odd: } t_1(x,y,y)=w(y,y,x)=w(x,x,y)=t_2(x,y,y) \\ t_3(x,y,y)=w(x,y,y)=w(y,x,y)=y=t_4(x,y,y). \\ \end{array}$

Then t_0, \cdots, t_4 are Jónsson's terms and hence the variety is congruence distributive.

Near λ -lattices with sectional antitone involutions

Let $\mathcal{A} = (A; \vee)$ be a λ -semilattice with a greatest element 1. We say that \mathcal{A} is **with sectional involutions** if for each $a \in A$ there is a mapping f_a of [a, 1] into itself such that $f_a(f_a(x)) = x$ for each $x \in [a, 1]$ and $f_a(a) = 1$, $f_a(1) = a$. We say that \mathcal{A} is **with sectional antitone involutions** if for each $a \in A$, the mapping f_a is antitone, i.e. if $x, y \in [a, 1]$ with $x \leq y$ then $f_a(y) \leq f_a(x)$.

For the sake of brevity, we will denote $f_a(x) = x^a$.

I. Chajda and M. Kolařík

Example 3. Consider the near λ -lattice \mathcal{A} from Fig. 1. Define e.g.

$$c^{a} = c, d^{a} = d, a^{a} = 1, 1^{a} = a, c^{b} = d, d^{b} = c, b^{b} = 1, 1^{b} = b$$

and trivially for 2-element intervals. One can easily check that \mathcal{A} is a near λ -lattice with sectional antitone involutions.

Let $\mathcal{A} = (A; \vee)$ be a near λ -lattice with sectional involutions. Introduce new binary operation \circ on A as follows :

$$x \circ y = (x \lor y)^y.$$

Since $x \lor y \in [y, 1]$, \circ is everywhere defined operation on A.

Lemma 3. Let $\mathcal{A} = (A; \vee)$ be a near λ -lattice with sectional involutions. Then $x \circ y = 1$ if and only if $x \leq y$.

Proof. If $x \leq y$ then $x \circ y = (x \lor y)^y = y^y = 1$. Conversely, suppose $x \circ y = 1$. Then $(x \lor y)^y = 1$. Since the involution is a bijection with $y^y = 1$, we conclude $x \lor y = y$ thus also $x \leq y$.

Theorem 4. Let $\mathcal{A} = (A; \vee)$ be a near λ -lattice with sectional involutions. Then the operation \circ satisfies the following identities:

- (I1) $x \circ 1 = 1$, $1 \circ x = x$, $x \circ x = 1$;
- (I2) $(x \circ y) \circ y = (y \circ x) \circ x;$
- (I3) $((x \circ y) \circ y) \circ y = x \circ y;$
- (I4) $x \circ ((((x \circ y) \circ y) \circ z) \circ z) = 1;$
- (I5) $x \circ (y \circ x) = 1.$

In this case we have $x \lor y = (x \circ y) \circ y$.

If, moreover, the sectional involutions are antitone then \circ satisfies also

(I6) $(((((x \circ y) \circ y) \circ z) \circ z) \circ x) \circ (y \circ x) = 1.$

Proof.

(I1):

$$\begin{array}{rcl} x \circ 1 & = & (x \lor 1)^1 = 1^1 = 1; \\ 1 \circ x & = & (1 \lor x)^x = 1^x = x; \\ x \circ x & = & (x \lor x)^x = x^x = 1. \end{array}$$

(I2): $(x \circ y) \circ y = ((x \lor y)^y \lor y)^y = (x \lor y)^{yy} = x \lor y$ thus also $(y \circ x) \circ x = y \lor x = x \lor y = (x \circ y) \circ y$.

Near λ -lattices

(I3): By the previous we have

$$((x \circ y) \circ y) \circ y = (x \lor y) \circ y = ((x \lor y) \lor y)^y = (x \lor y)^y = x \circ y.$$

- (I4) : Since \mathcal{A} is a near λ -lattice, it satisfies the identity (A3) whence $x \leq (x \lor y) \lor z$. Applying the previous result $x \lor y = (x \circ y) \circ y$, we obtain $x \leq (((x \circ y) \circ y) \circ z) \circ z$. Due to Lemma 3 we get (I4).
- (I5): $x \circ (y \circ x) = (x \lor (y \lor x)^x)^{(y \lor x)^x} = ((y \lor x)^x)^{(y \lor x)^x} = 1.$ Suppose now that the sectional involutions are antitone. Evidently $x \le y \lor x, x \lor y \le (x \lor y) \lor z$ and $x \le x \lor ((x \lor y) \lor z) = (x \lor y) \lor z$ thus

$$\begin{aligned} ((((x \circ y) \circ y) \circ z) \circ z) \circ x &= ((x \lor y) \lor z) \circ x = (((x \lor y) \lor z) \lor x)^x \\ &= (x \lor ((x \lor y) \lor z))^x = ((x \lor y) \lor z)^x \le (x \lor y)^x \\ &= (y \lor x)^x = y \circ x. \end{aligned}$$

By Lemma 3 we obtain (I6).

Remark 4. The third simple identity in (I1), namely $x \circ x = 1$, can be derived by the other two remaining and (I2) as follows

$$x \circ x = (1 \circ x) \circ x = (x \circ 1) \circ 1 = 1.$$

We are wonder if our operation \circ determines also the near λ -lattice with sectional involutions. We can state

Theorem 5. Let $\mathcal{A} = (A; \circ, 1)$ be an algebra of type (2, 0) satisfying the identities (I1) - (I5). Define

$$x \leq y$$
 if and only if $x \circ y = 1$.

Then $(A; \leq)$ is an ordered set with the greatest element 1 which is an upper λ -semilattice for

$$x \lor y = (x \circ y) \circ y.$$

The involution on each [a, 1] is defined by $x^a = x \circ a$ for $x \in [a, 1]$. If \mathcal{A} satisfies, moreover, (I6) then for each $p \in A$ the involution on [p, 1] is antitone and $([p, 1]; \leq)$ is a λ -lattice whose operations are \vee and \wedge_p defined by $x \wedge_p y = (x^p \vee y^p)^p$.

Proof. By (I1), the relation \leq is reflexive and $x \leq 1$ for each $x \in A$. If $x \leq y$ and $y \leq x$ then, by (I2), $x = 1 \circ x = (y \circ x) \circ x = (x \circ y) \circ y = \circ y = y$ thus \leq is antisymmetrical. Suppose $x \leq y$ and $y \leq z$. Then, applying (I1) and (I4) we have

$$\begin{array}{rcl} x \circ z &=& x \circ (1 \circ z) = x \circ ((y \circ z) \circ z) \\ &=& x \circ (((1 \circ y) \circ z) \circ z) \\ &=& x \circ ((((x \circ y) \circ y) \circ z) \circ z) = 1 \end{array}$$

whence $x \leq z$. Thus \leq is transitive and hence an order on A.

Put $x \lor y = (x \circ y) \circ y$. By (I5) and (I2) we have $x \le (y \circ x) \circ x = (x \circ y) \circ y$ and, by (I5), $y \le (x \circ y) \circ y$ thus $(x \circ y) \circ y \in U(x, y)$. If $x \le y$ then $x \circ y = 1$ thus $(x \circ y) \circ y = 1 \circ y = y$.

Hence, $(A; \vee)$ is an upper λ -semilattice with the greatest element 1.

Let $x \in [a, 1]$ and define $x^a = x \circ a$. Then $x^{aa} = (x \circ a) \circ a = x \lor a = x$, $a^a = a \circ a = 1$ and $1^a = 1 \circ a = a$ thus it is an involution on [a, 1] for each $a \in A$. Suppose that $\mathcal{A} = (A; \circ, 1)$ satisfies also (I6). Then for $x, y, z \in A$, $x \leq y \leq z$ (i.e., $y, z \in [x, 1]$) we have by (I6) $((x \lor y) \lor z) \circ x \leq y \circ x$, i.e., $z^x = z \circ x = ((x \lor y) \lor z) \circ x \leq y \circ x = y^x$, i.e., every involution on each [x, 1] is antitone. In this case, define for $a, b \in [p, 1]$

$$a \wedge_p b = (a^p \vee b^p)^p$$
.

Since $a^p, b^p \leq a^p \vee b^p$, we have

$$a = a^{pp} \ge (a^p \lor b^p)^p = a \land_p b$$

$$b = b^{pp} \ge (a^p \lor b^p)^p = a \land_p b$$

thus $a \wedge_p b \in L(a, b)$. If $a \leq b$ then $a^p \geq b^p$ thus $a \wedge_p b = (a^p \vee b^p)^p = a^{pp} = a$, i.e., \wedge_p satisfies (i) of Definition 2. Of course, $x \wedge_p y = y \wedge_p x$. Since $x \wedge_p y \leq x$, we have $x \vee (y \wedge_p x) = x$ thus also (ii) of Definition 2 is satisfied; (iii) is clear. Hence, \wedge_p is the associated operation and $([p, 1]; \vee, \wedge_p)$ is a λ -lattice. \Box

Example 4. The structure derived from $\mathcal{A} = (A; \circ, 1)$ as shown in Theorem 5 need not be a near λ -lattice. Consider the near λ -lattice from Example 2. Then we have $c \wedge_a d = (c^a \vee d^a)^a = (c \vee d)^a = 1^a = a$ in [a, 1] but in [b, 1] we have $c \wedge_b d = (c^b \vee d^b)^b = (d \vee c)^b = 1^b = b \neq a$. Hence, \wedge_p cannot serve as an associated operation of $(A; \vee)$.

On the contrary, if \mathcal{A} is a near λ -lattice, we can prove :

Theorem 6. Let $\mathcal{A} = (A; \vee)$ be a near λ -lattice with sectional antitone involutions and \wedge be its associated operation. If for $b \in A$ the section $([b, 1], \vee, \wedge)$ is a λ -lattice then

$$x \wedge y = (((x \circ b) \circ (y \circ b)) \circ (y \circ b)) \circ b$$

for all $x, y \in [b, 1]$.

Proof. Since the section [b, 1] is a λ -lattice, $x \wedge y$ is uniquely determined for each $x, y \in [b, 1]$. By Theorem 5 (in the section [b, 1]), we have $x \wedge y = (x^b \vee y^b)^b$. Moreover, also by Theorem 5, for each $x, y \in [b, 1]$ it holds:

$$\begin{aligned} (x^b \vee y^b)^b &= (x^b \vee y^b) \circ b = ((x \circ b) \vee (y \circ b)) \circ b \\ &= (((x \circ b) \circ (y \circ b)) \circ (y \circ b)) \circ b. \end{aligned}$$

Near λ -lattices

Ortho λ -semilattices

By an **ortholattice** is meant an algebra $\mathcal{L} = (L; \lor, \land, ^{\perp}, 0, 1)$ where $(L; \lor, \land, 0, 1)$ is a bounded lattice, $x^{\perp \perp} = x$, $x \leq y \Rightarrow y^{\perp} \leq x^{\perp}$ and $x \land x^{\perp} = 0$ (which is equivalent to $x \lor x^{\perp} = 1$).

Hence, it is a complemented lattice where the operation $^{\perp}$ of complementation is an antitone involution on L. We can generalize this concept as follows:

Definition 4. By an ortho λ -lattice is meant an algebra $\mathcal{L} = (L; \vee, \wedge, \stackrel{\perp}{}, 0, 1)$ such that $(L; \vee, \wedge, 0, 1)$ is a bounded λ -lattice and $x \mapsto x^{\perp}$ is an antitone involution satisfying $x \vee x^{\perp} = 1$, $x \wedge x^{\perp} = 0$.

By an **ortho** λ -semilattice is meant a λ -semilattice with sectional antitone involutions $(A; \vee)$ where all sections are ortho λ -lattices, i.e., for each $p \in A$ $([p, 1]; \leq)$ is an ortho λ -lattice, such that x^p is the orthocomplement of $x \in [p, 1]$ in this section.

Example 5. The following λ -lattice is an ortho λ -lattice and ortho λ -semilattice as well.

The orthocomplementation in intervals [x, 1] for $x \neq 0$ is determined uniquely and for x = 0 it is pointed in the diagram.

Theorem 7. Let $\mathcal{A} = (A; \vee)$ be a λ -semilattice with sectional antitone involutions. Then \mathcal{A} is an ortho λ -semilattice if and only if the derived operation $x \circ y = (x \vee y)^y$ satisfies the identity

$$(((x \circ y) \circ y) \circ (x \circ y)) \circ (x \circ y) = 1. \quad (*)$$

Proof. Obviously,

$$\begin{aligned} (((x \circ y) \circ y) \circ (x \circ y)) \circ (x \circ y) &= ((x \circ y) \circ y) \lor (x \circ y) \\ &= ((x \circ y) \circ y) \lor (((x \circ y) \circ y) \circ y) \\ &= (x \lor y) \lor (x \lor y)^y, \end{aligned}$$

I. Chajda and M. Kolařík

hence the identity (*) can be rewritten as

$$(x \lor y) \lor (x \lor y)^y = 1.$$

Trivially, $x \lor y \in [y, 1]$ thus it is clear that in this case $a \lor a^y = 1$ for each $a \in [y, 1]$. Since $y \in L(a, a^y)$, we have for the operation \land_y

$$a \wedge_{y} a^{y} = (a^{y} \vee a^{yy})^{y} = (a^{y} \vee a)^{y} = 1^{y} = y$$

thus a^y is an orthocomplement of a in [y, 1]. Conversely, if \mathcal{A} is an ortho λ -semilattice and $x, y \in A$ then $x \lor y \in [y, 1]$ and hence

$$(x\vee y)\vee (x\vee y)^y=1$$

whence the identity is evident.

Due to Theorem 7, the class \mathcal{O} of ortho λ -semilattices (considered in the signature $(\circ, 1)$) forms a variety.

Theorem 8. The variety \mathcal{O} of ortho λ -semilattices is weakly regular.

Proof. Let $t_1(x, y) = x \circ y$ and $t_2(x, y) = y \circ x$. Then $t_1(x, x) = t_2(x, x) = x \circ x = 1$ and conversely, if $t_1(x, y) = t_2(x, y) = 1$ then $x \circ y = 1 = y \circ x$ thus $x \leq y$ and $y \leq x$ whence x = y. Hence, t_1, t_2 are Csákány's terms for weak regularity and hence \mathcal{O} is weakly regular. \Box

References

- [1] J. C. Abbott, Semi-boolean algebras, Matem. Vestnik, 4(1967), 177-198.
- [2] G. Birkhoff, Lattice Theory, (3rd edition), Colloq. Publ., 25, Amer. Math. Soc., Providence, R. I., 1967.
- [3] I. Chajda and M. Kolařík, Nearlattices, Discrete Math., submitted.
- [4] J. Ježek and R. Quackenbush, Directoids: algebraic models of up-directed sets, Algebra Universalis, 27(1990), 49-69.
- [5] V. Snášel, λ-lattices, Math. Bohem., **122**(1997), 267-272.