Near λ-lattices

Ivan Chajda and M. Kolařík
Department of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 77900 Olomouc, Czech Republic
e-mail: chajda@inf.upol.cz and kolarik@inf.upol.cz
Abstract. By a near λ-lattice is meant an upper λ-semilattice where is defined a partial binary operation $x \wedge y$ with respect to the induced order whenever x, y has a common lower bound. Alternatively, a near λ-lattice can be described as an algebra with one ternary operation satisfying nine simple conditions. Hence, the class of near λ-lattices is a quasivariety. A λ-semilattice $\mathcal{A}=(A ; \vee)$ is said to have sectional (antitone) involutions if for each $a \in A$ there exists an (antitone) involution on $[a, 1]$, where 1 is the greatest element of \mathcal{A}. If this antitone involution is a complementation, \mathcal{A} is called an ortho λ-semilattice. We characterize these near λ-lattices by certain identities.

Nearlattices were studied (under different names) by several authors. Some essential results are collected in [3] where is given also a characterization of nearlattices as algebras with one ternary operation. The concept of a lattice was generalized by V. Snášel [5] by dropping out associativity. The resulting algebra $\mathcal{A}=(A ; \vee, \wedge)$ satisfying idempotency for \vee, \wedge, commutativity for \vee, \wedge, the absorption laws and the so-called skew associativity

$$
\begin{equation*}
x \vee((x \vee y) \vee z)=(x \vee y) \vee z, \quad x \wedge((x \wedge y) \wedge z)=(x \wedge y) \wedge z \tag{SA}
\end{equation*}
$$

is called a λ-lattice. Applying this concept instead of a lattice in the definition of nearlattice, we obtain a near λ-lattice. This is the subject of our next considerations.

In the sequel, we equip these near λ-lattices with the so-called sectional involutions to obtain structures analogous to ortholattices (see [2]). They can be characterized by a new binary operation which is derived "as implication" similarly as it was done by J. C. Abbott [1] for boolean near-lattices.

Definition 1. An upper λ-semilattice (or a commutative directoid in [4]) is an algebra $\mathcal{A}=(A ; \vee)$ of type (2) satisfying the identities
(A1) $x \vee x=x$ (idempotency);
(A2) $x \vee y=y \vee x$ (commutativity);

Received February 7, 2006.
2000 Mathematics Subject Classification: 06A12, 06C15, 06F35.
Key words and phrases: near λ-lattice, λ-semilattice, ortho λ-lattice, ortho λ-semilattice.
(A3) $x \vee((x \vee y) \vee z)=(x \vee y) \vee z$ (skew associativity) .

Lemma 1. Let $(A ; \vee)$ be an upper λ-semilattice. If we define

$$
x \leq y \quad \text { if and only if } \quad x \vee y=y
$$

then the relation \leq is a partial order on A.
Proof. Clearly $x \leq x$ for each $x \in A$ by (A1). Further, if $x \leq y$ and $y \leq x$, then $y=x \vee y=y \vee x=x$ by (A2). Finally, if $x \leq y, y \leq z$, then, by (A3),

$$
x \vee z=x \vee(y \vee z)=x \vee((x \vee y) \vee z)=(x \vee y) \vee z=y \vee z=z
$$

thus $x \leq z$.
Let $(A ; \leq)$ be an ordered set. Denote by

$$
\begin{aligned}
& U(a, b)=\{x \in A ; a \leq x \text { and } b \leq x\} \text { and } \\
& L(a, b)=\{x \in A ; x \leq a \text { and } x \leq b\} \text { for } a, b \in A .
\end{aligned}
$$

Definition 2. A partial binary operation \wedge on an upper λ-semilattice $\mathcal{A}=(A ; \vee)$ will be called the associated operation, if the following properties hold for all $x, y, z \in A$:
i) $x \wedge y$ is defined if and only if $L(x, y) \neq \emptyset$ and
a) $x \wedge y \in L(x, y)$;
b) $x \leq y$ implies $x \wedge y=x$;
ii) If $x \wedge y$ is defined then $y \wedge x$ and $x \vee(x \wedge y)$ are defined and
a) $x \wedge y=y \wedge x$;
b) $x \vee(x \wedge y)=x$;
iii) If $(x \wedge y) \wedge z$ is defined then $x \wedge((x \wedge y) \wedge z)$ is defined and $x \wedge((x \wedge y) \wedge z)=(x \wedge y) \wedge z$.

Remark 1. It is clear from the definition that the associated operation \wedge is idempotent, i.e., for each $x \in A, x \wedge x$ exists and $x \wedge x=x$. Further, the associated operation \wedge satisfies the identity $x \wedge(x \vee y)=x$, since $x \leq x \vee y$.

Definition 3. An upper λ-semilattice $\mathcal{A}=(A ; \vee)$ is called a near λ-lattice, if there is defined the associated operation \wedge on A.

Remark 2. If $\mathcal{A}=(A ; \vee)$ is a near λ-lattice then it does not mean that for each $a \in A$ the interval $[a)$ is a λ-lattice, see e.g. the following example:

Example 1. Consider the ordered set $(\{a, b, c, d, 1\}, \leq)$ as shown in Fig. 1. If
we define $a \vee b=c, c \vee d=1$ and trivially for comparable elements then $\mathcal{A}=(\{a, b, c, d, 1\}, \vee)$ is an upper λ-semilattice. To convert it into a near λ-lattice, we have two choices for non-comparable elements, namely $c \wedge d=a$ or $c \wedge d=b$. Let e.g. $c \wedge d=b$ and $x \wedge y=x$ whenever $x \leq y$. Then \mathcal{A} is a near λ-lattice but the interval $[a, 1]=\{a, c, d, 1\}$ is not a λ-lattice because $c \wedge d$ is not defined in it. On the contrary $[b, 1]$ is a λ-lattice as one can easily verify.

Fig. 1

Now, we show that near λ-lattices can be considered equivalently as algebras with one ternary operation.

Theorem 1. Let $\mathcal{M}=(M ; \vee)$ be a near λ-lattice and \wedge its associated operation. Define a ternary operation $w(x, y, z)=(x \vee z) \wedge(y \vee z)$ on M. Then $w(x, y, z)$ is an everywhere defined operation and the following conditions are satisfied:
(C) for every $p, q \in L(x, y), w(x, y, p)=w(x, y, q)$;
(P1) $w(x, y, x)=x$;
(P2) $w(x, x, y)=w(y, y, x)$;
(P3) $w(x, x, w(w(x, x, y), w(x, x, y), z))=w(w(x, x, y), w(x, x, y), z)$;
(P4) $w(x, y, z)=w(y, x, z)$;
(P5) $w(x, w(w(x, y, z), v, z), z)=w(w(x, y, z), v, z)$;
(P6) $w(x, w(y, y, x), z)=w(x, x, z)$;
(P7) $w(w(x, x, z), w(x, x, z), w(y, x, z))=w(x, x, z)$;
(P8) $w(w(x, x, z), w(y, y, z), z)=w(x, y, z)$.
Proof. Clearly $z \leq x \vee z, z \leq y \vee z$, hence $L(x \vee z, y \vee z) \neq \emptyset$, thus $(x \vee z) \wedge(y \vee z)$ is an everywhere defined operation on M. To prove the condition (C) we suppose $p, q \in L(x, y)$. Then $L(x, y) \neq \emptyset$ and hence $x \wedge y$ is defined. This yields

$$
w(x, y, p)=(x \vee p) \wedge(y \vee p)=x \wedge y=(x \vee q) \wedge(y \vee q)=w(x, y, q)
$$

Prove the identities (P1)-(P8) :
(P1) $w(x, y, x)=(x \vee x) \wedge(y \vee x)=x \wedge(y \vee x)=x$;
(P2)

$$
\begin{aligned}
w(x, x, y) & =(x \vee y) \wedge(x \vee y)=x \vee y \\
& =y \vee x=(y \vee x) \wedge(y \vee x) \\
& =w(y, y, x) ;
\end{aligned}
$$

(P3)

$$
\begin{aligned}
w(x, x, w(w(x, x, y), w(x, x, y), z)) & =x \vee w(w(x, x, y), w(x, x, y), z) \\
& =x \vee(w(x, x, y) \vee z) \\
& =x \vee((x \vee y) \vee z) \\
& =(x \vee y) \vee z \\
& =w(x, x, y) \vee z \\
& =w(w(x, x, y), w(x, x, y), z) ;
\end{aligned}
$$

$(\mathrm{P} 4) w(x, y, z)=(x \vee z) \wedge(y \vee z)=(y \vee z) \wedge(x \vee z)=w(y, x, z)$;
(P5)

$$
\begin{aligned}
w(x, w(w(x, y, z), v, z), z) & =(x \vee z) \wedge(w(w(x, y, z), v, z) \vee z) \\
& =(x \vee z) \wedge(((w(x, y, z) \vee z) \wedge(v \vee z)) \vee z) \\
& =(x \vee z) \wedge((w(x, y, z) \vee z) \wedge(v \vee z)) \\
& =(x \vee z) \wedge((((x \vee z) \wedge(y \vee z)) \vee z) \wedge(v \vee z)) \\
& =(x \vee z) \wedge(((x \vee z) \wedge(y \vee z)) \wedge(v \vee z)) \\
& =((x \vee z) \wedge(y \vee z)) \wedge(v \vee z) \\
& =(((x \vee z) \wedge(y \vee z)) \vee z) \wedge(v \vee z) \\
& =w((x \vee z) \wedge(y \vee z), v, z) \\
& =w(w(x, y, z), v, z) ;
\end{aligned}
$$

(P6)

$$
\begin{aligned}
w(x, w(y, y, x), z) & =w(x, y \vee x, z)=(x \vee z) \wedge((y \vee x) \vee z) \\
& =(x \vee z) \wedge(y \vee(x \vee z))=x \vee z \\
& =w(x, x, z)
\end{aligned}
$$

(P7)

$$
\begin{aligned}
w(w(x, x, z), w(x, x, z), w(y, x, z)) & =w(x \vee z, x \vee z, w(y, x, z)) \\
& =(x \vee z) \vee w(y, x, z) \\
& =(x \vee z) \vee((y \vee z) \wedge(x \vee z)) \\
& =x \vee z=w(x, x, z) ;
\end{aligned}
$$

(P8)

$$
\begin{aligned}
w(w(x, x, z), w(y, y, z), z) & =w(x \vee z, y \vee z, z) \\
& =((x \vee z) \vee z) \wedge((y \vee z) \vee z) \\
& =(x \vee z) \wedge(y \vee z) \\
& =w(x, y, z) .
\end{aligned}
$$

We are going to prove the converse. For this, let us state the following
Lemma 2. Let $\mathcal{M}=(M ; w)$ be an algebra of type (3) satisfying the identities (P 1$)$, (P2), and (P3). Define $x \vee y=w(x, x, y)$. Then ($M ; \vee$) is an upper λ-semilattice.
Proof. Idempotency: by (P1), we have $x \vee x=w(x, x, x)=x$.
Commutativity : by (P2), $x \vee y=w(x, x, y)=w(y, y, x)=y \vee x$.
Skew associativity : applying (P3), we infer

$$
\begin{aligned}
x \vee((x \vee y) \vee z) & =w(x, x,(x \vee y) \vee z) \\
& =w(x, x, w(x \vee y, x \vee y, z)) \\
& =w(x, x, w(w(x, x, y), w(x, x, y), z)) \\
& =w(w(x, x, y), w(x, x, y), z) \\
& =w(x \vee y, x \vee y, z)=(x \vee y) \vee z .
\end{aligned}
$$

Due to Lemma 2, we can introduce an order \leq on an algebra $\mathcal{M}=(M ; w)$ as follows :

$$
x \leq y \quad \text { if and only if } \quad w(x, x, y)=y .
$$

This order will be called the induced order of \mathcal{M}.
Theorem 2. Let $\mathcal{M}=(M ; w)$ be an algebra of type (3) satisfying (C), (P1) - (P7), and let \leq be the induced order. Then for $x \vee y=w(x, x, y),(M ; \vee)$ is an upper λ-semilattice. For $x, y, p \in M$, such that $p \leq x, y$ we define

$$
x \wedge y=w(x, y, p)
$$

Then $(M ; \vee)$ is a near λ-lattice where \wedge is the associated operation.
If $\mathcal{M}=(M ; w)$ satisfies moreover (P 8$)$, then the correspondence between near λ-lattices and algebras $(M ; w)$ satisfying $(\mathrm{C}),(\mathrm{P} 1)-(\mathrm{P} 8)$ is one-to-one.
Proof. By Lemma $2,(M ; \vee)$ is an upper λ-semilattice. Further, for each $x \in M$ we have $x \in L(x, x)$ and hence

$$
x \wedge x=w(x, x, x)=x \vee x=x .
$$

Suppose now $L(x, y) \neq \emptyset$, i.e., there exists $p \in L(x, y)$. By (P4) we get

$$
x \wedge y=w(x, y, p)=w(y, x, p)=y \wedge x
$$

Since $(x \wedge y) \wedge z$ is defined, we have $L(L(x, y), z) \neq \emptyset$, and thus exist p, q such that $p \in L(x, y)$ and $q \in L(L(x, y), z)$. Hence also $q \in L(x, y)$, by (C), w(x,y,p) = $w(x, y, q)$, and by (P5)

$$
\begin{aligned}
x \wedge((x \wedge y) \wedge z) & =x \wedge(w(x, y, p) \wedge z)=x \wedge(w(w(x, y, p), z, q)) \\
& =w(x, w(w(x, y, p), z, q), q)=w(w(x, y, q), z, q) \\
& =(w(x, y, q) \vee q) \wedge(z \vee q) \\
& =(((x \vee q) \wedge(y \vee q)) \vee q) \wedge(z \vee q) \\
& =((x \vee q) \wedge(y \vee q)) \wedge(z \vee q) \\
& =(x \wedge y) \wedge z
\end{aligned}
$$

It remains to show the absorption laws. Since $x \leq y \vee x$, we have $x \in L(x, y \vee x)$ and hence $x \wedge(y \vee x)$ is defined and, by (P6), we have

$$
\begin{aligned}
x \wedge(y \vee x) & =x \wedge w(y, y, x)=w(x, w(y, y, x), x) \\
& =w(x, x, x)=x
\end{aligned}
$$

To prove the second absorption law, suppose $L(x, y) \neq \emptyset$ and $p \in L(x, y)$. Then $y \wedge x$ is defined, and applying (P7),

$$
\begin{aligned}
x \vee(y \wedge x) & =x \vee w(y, x, p)=(x \vee p) \vee w(y, x, p) \\
& =w(x, x, p) \vee w(y, x, p) \\
& =w(w(x, x, p), w(x, x, p), w(y, x, p)) \\
& =w(x, x, p)=x \wedge x=x .
\end{aligned}
$$

Hence, (M, \vee) is a near λ-lattice.
If $(M ; w)$ is an algebra of type (3) satisfying (C), (P1) - (P8), $x \vee y:=w(x, x, y)$ for all $x, y \in M$ and $x \wedge y:=w(x, y, p)$ for all $p \in M$ and all $x, y \in M$ with $x, y \geq p$ then $(x \vee z) \wedge(y \vee z)=w(w(x, x, z), w(y, y, z), z)=w(x, y, z)$ for all $x, y, z \in M$.

Thus the correspondence between near λ-lattices and induced algebras $\mathcal{M}=$ $(M ; w)$ is one-to-one.

Example 2. Let $\mathcal{M}=(M ; \vee)$ be a near λ-lattice depicted in Fig. 2, such that $x \wedge y=p_{2}, p_{1} \wedge p_{2}=p_{3}, p_{1} \vee p_{2}=x$ and $p_{3} \vee p_{4}=p_{2}$. Then $L(x, y)=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ and, by condition (C) from Theorem 1, we have :

$$
w\left(x, y, p_{i}\right)=w\left(x, y, p_{j}\right) \text { for all } i, j \in\{1,2,3,4\}
$$

Note that $p_{3} \wedge p_{4}$ is not defined, because $L\left(p_{3}, p_{4}\right)=\emptyset$.

Fig. 2

Remark 3. Because of Theorems 1 and 2 , near λ-lattices can be alternatively considered as algebras $\mathcal{M}=(M ; w)$ of type (3) satisfying (C), (P1) - (P8) and \leq will be referred to as the induced order of $\mathcal{M}=(M ; w)$.

Since (P1) - (P8) are identities and (C) is a quasi-identity, we have
Corollary. The class of all near λ-lattices (considered as ternary algebras) is a quasivariety \mathcal{N}.

For varieties which are subquasivarieties of \mathcal{N}, we can prove
Theorem 3. Every variety of near λ-lattices is congruence distributive.
Proof. Take $n=4$, and $t_{0}(x, y, z)=x, t_{4}(x, y, z)=z$ and $t_{1}(x, y, z)=w(z, y, x)$, $t_{2}(x, y, z)=w(x, x, z), t_{3}(x, y, z)=w(x, y, z)$.

Then $\quad t_{0}(x, y, x)=x$
$t_{1}(x, y, x)=w(x, y, x)=x$
$t_{2}(x, y, x)=w(x, x, x)=x$
$t_{3}(x, y, x)=w(x, y, x)=x$
$t_{4}(x, y, x)=x$
i even: $\quad t_{0}(x, x, y)=x=w(x, y, x)=w(y, x, x)=t_{1}(x, x, y)$
$t_{2}(x, x, y)=w(x, x, y)=t_{3}(x, x, y)$
i odd: $\quad t_{1}(x, y, y)=w(y, y, x)=w(x, x, y)=t_{2}(x, y, y)$
$t_{3}(x, y, y)=w(x, y, y)=w(y, x, y)=y=t_{4}(x, y, y)$.
Then t_{0}, \cdots, t_{4} are Jónsson's terms and hence the variety is congruence distributive.

Near λ-lattices with sectional antitone involutions

Let $\mathcal{A}=(A ; \vee)$ be a λ-semilattice with a greatest element 1 . We say that \mathcal{A} is with sectional involutions if for each $a \in A$ there is a mapping f_{a} of $[a, 1]$ into itself such that $f_{a}\left(f_{a}(x)\right)=x$ for each $x \in[a, 1]$ and $f_{a}(a)=1, f_{a}(1)=a$. We say that \mathcal{A} is with sectional antitone involutions if for each $a \in A$, the mapping f_{a} is antitone, i.e. if $x, y \in[a, 1]$ with $x \leq y$ then $f_{a}(y) \leq f_{a}(x)$.

For the sake of brevity, we will denote $f_{a}(x)=x^{a}$.

Example 3. Consider the near λ-lattice \mathcal{A} from Fig. 1. Define e.g.

$$
c^{a}=c, d^{a}=d, a^{a}=1,1^{a}=a, c^{b}=d, d^{b}=c, b^{b}=1,1^{b}=b
$$

and trivially for 2 -element intervals. One can easily check that \mathcal{A} is a near λ-lattice with sectional antitone involutions.

Let $\mathcal{A}=(A ; \vee)$ be a near λ-lattice with sectional involutions. Introduce new binary operation \circ on A as follows :

$$
x \circ y=(x \vee y)^{y} .
$$

Since $x \vee y \in[y, 1]$, ○ is everywhere defined operation on A.
Lemma 3. Let $\mathcal{A}=(A ; \vee)$ be a near λ-lattice with sectional involutions. Then $x \circ y=1$ if and only if $x \leq y$.
Proof. If $x \leq y$ then $x \circ y=(x \vee y)^{y}=y^{y}=1$. Conversely, suppose $x \circ y=1$. Then $(x \vee y)^{y}=1$. Since the involution is a bijection with $y^{y}=1$, we conclude $x \vee y=y$ thus also $x \leq y$.

Theorem 4. Let $\mathcal{A}=(A ; \vee)$ be a near λ-lattice with sectional involutions. Then the operation \circ satisfies the following identities:
(I1) $x \circ 1=1,1 \circ x=x, x \circ x=1$;
(I2) $(x \circ y) \circ y=(y \circ x) \circ x$;
(I3) $((x \circ y) \circ y) \circ y=x \circ y$;
(I4) $x \circ((((x \circ y) \circ y) \circ z) \circ z)=1$;
(I5) $x \circ(y \circ x)=1$.
In this case we have $x \vee y=(x \circ y) \circ y$.
If, moreover, the sectional involutions are antitone then \circ satisfies also
(I6) $(((((x \circ y) \circ y) \circ z) \circ z) \circ x) \circ(y \circ x)=1$.
Proof.
(I1) :

$$
\begin{aligned}
& x \circ 1=(x \vee 1)^{1}=1^{1}=1 ; \\
& 1 \circ x=(1 \vee x)^{x}=1^{x}=x ; \\
& x \circ x=(x \vee x)^{x}=x^{x}=1
\end{aligned}
$$

(I2) : $(x \circ y) \circ y=\left((x \vee y)^{y} \vee y\right)^{y}=(x \vee y)^{y y}=x \vee y$ thus also $(y \circ x) \circ x=y \vee x=$ $x \vee y=(x \circ y) \circ y$.
(I3) : By the previous we have

$$
((x \circ y) \circ y) \circ y=(x \vee y) \circ y=((x \vee y) \vee y)^{y}=(x \vee y)^{y}=x \circ y
$$

(I4) : Since \mathcal{A} is a near λ-lattice, it satisfies the identity (A3) whence $x \leq(x \vee y) \vee z$.
Applying the previous result $x \vee y=(x \circ y) \circ y$, we obtain $x \leq(((x \circ y) \circ y) \circ z) \circ z$. Due to Lemma 3 we get (I4).
(I5) : $x \circ(y \circ x)=\left(x \vee(y \vee x)^{x}\right)^{(y \vee x)^{x}}=\left((y \vee x)^{x}\right)^{(y \vee x)^{x}}=1$.
Suppose now that the sectional involutions are antitone. Evidently $x \leq y \vee$ $x, x \vee y \leq(x \vee y) \vee z$ and $x \leq x \vee((x \vee y) \vee z)=(x \vee y) \vee z$ thus

$$
\begin{aligned}
((((x \circ y) \circ y) \circ z) \circ z) \circ x & =((x \vee y) \vee z) \circ x=(((x \vee y) \vee z) \vee x)^{x} \\
& =(x \vee((x \vee y) \vee z))^{x}=((x \vee y) \vee z)^{x} \leq(x \vee y)^{x} \\
& =(y \vee x)^{x}=y \circ x .
\end{aligned}
$$

By Lemma 3 we obtain (I6).
Remark 4. The third simple identity in (I1), namely $x \circ x=1$, can be derived by the other two remaining and (I2) as follows

$$
x \circ x=(1 \circ x) \circ x=(x \circ 1) \circ 1=1 .
$$

We are wonder if our operation o determines also the near λ-lattice with sectional involutions. We can state

Theorem 5. Let $\mathcal{A}=(A ; \circ, 1)$ be an algebra of type $(2,0)$ satisfying the identities (I1) - (I5). Define

$$
x \leq y \quad \text { if and only if } x \circ y=1
$$

Then $(A ; \leq)$ is an ordered set with the greatest element 1 which is an upper λ semilattice for

$$
x \vee y=(x \circ y) \circ y
$$

The involution on each $[a, 1]$ is defined by $x^{a}=x \circ a$ for $x \in[a, 1]$.
If \mathcal{A} satisfies, moreover, (I6) then for each $p \in A$ the involution on $[p, 1]$ is antitone and $([p, 1] ; \leq)$ is a λ-lattice whose operations are \vee and \wedge_{p} defined by $x \wedge_{p} y=$ $\left(x^{p} \vee y^{p}\right)^{p}$.
Proof. By (I1), the relation \leq is reflexive and $x \leq 1$ for each $x \in A$. If $x \leq y$ and $y \leq x$ then, by (I2), $x=1 \circ x=(y \circ x) \circ x=(x \circ y) \circ y=\circ y=y$ thus \leq is antisymmetrical. Suppose $x \leq y$ and $y \leq z$. Then, applying (I1) and (I4) we have

$$
\begin{aligned}
x \circ z & =x \circ(1 \circ z)=x \circ((y \circ z) \circ z) \\
& =x \circ(((1 \circ y) \circ z) \circ z) \\
& =x \circ((((x \circ y) \circ y) \circ z) \circ z)=1
\end{aligned}
$$

whence $x \leq z$. Thus \leq is transitive and hence an order on A.
Put $x \vee y=(x \circ y) \circ y$. By (I5) and (I2) we have $x \leq(y \circ x) \circ x=(x \circ y) \circ y$ and, by (I5), $y \leq(x \circ y) \circ y$ thus $(x \circ y) \circ y \in U(x, y)$. If $x \leq y$ then $x \circ y=1$ thus $(x \circ y) \circ y=1 \circ y=y$.
Hence, $(A ; \vee)$ is an upper λ-semilattice with the greatest element 1 .
Let $x \in[a, 1]$ and define $x^{a}=x \circ a$. Then $x^{a a}=(x \circ a) \circ a=x \vee a=x$, $a^{a}=a \circ a=1$ and $1^{a}=1 \circ a=a$ thus it is an involution on $[a, 1]$ for each $a \in A$.
Suppose that $\mathcal{A}=(A ; \circ, 1)$ satisfies also (I6). Then for $x, y, z \in A, x \leq y \leq z$ (i.e., $y, z \in[x, 1])$ we have by (I6) $((x \vee y) \vee z) \circ x \leq y \circ x$, i.e., $z^{x}=z \circ x=((x \vee y) \vee z) \circ x \leq$ $y \circ x=y^{x}$, i.e., every involution on each $[x, 1]$ is antitone. In this case, define for $a, b \in[p, 1]$

$$
a \wedge_{p} b=\left(a^{p} \vee b^{p}\right)^{p}
$$

Since $a^{p}, b^{p} \leq a^{p} \vee b^{p}$, we have

$$
\begin{aligned}
a & =a^{p p} \geq\left(a^{p} \vee b^{p}\right)^{p}=a \wedge_{p} b \\
b & =b^{p p} \geq\left(a^{p} \vee b^{p}\right)^{p}=a \wedge_{p} b
\end{aligned}
$$

thus $a \wedge_{p} b \in L(a, b)$. If $a \leq b$ then $a^{p} \geq b^{p}$ thus $a \wedge_{p} b=\left(a^{p} \vee b^{p}\right)^{p}=a^{p p}=a$, i.e., \wedge_{p} satisfies (i) of Definition 2. Of course, $x \wedge_{p} y=y \wedge_{p} x$. Since $x \wedge_{p} y \leq x$, we have $x \vee\left(y \wedge_{p} x\right)=x$ thus also (ii) of Definition 2 is satisfied; (iii) is clear. Hence, \wedge_{p} is the associated operation and $\left([p, 1] ; \vee, \wedge_{p}\right)$ is a λ-lattice.

Example 4. The structure derived from $\mathcal{A}=(A ; \circ, 1)$ as shown in Theorem 5 need not be a near λ-lattice. Consider the near λ-lattice from Example 2. Then we have $c \wedge_{a} d=\left(c^{a} \vee d^{a}\right)^{a}=(c \vee d)^{a}=1^{a}=a$ in [a,1] but in [b,1] we have $c \wedge_{b} d=\left(c^{b} \vee d^{b}\right)^{b}=(d \vee c)^{b}=1^{b}=b \neq a$. Hence, \wedge_{p} cannot serve as an associated operation of $(A ; \vee)$.

On the contrary, if \mathcal{A} is a near λ-lattice, we can prove :
Theorem 6. Let $\mathcal{A}=(A ; \vee)$ be a near λ-lattice with sectional antitone involutions and \wedge be its associated operation. If for $b \in A$ the section $([b, 1], \vee, \wedge)$ is a λ-lattice then

$$
x \wedge y=(((x \circ b) \circ(y \circ b)) \circ(y \circ b)) \circ b
$$

for all $x, y \in[b, 1]$.
Proof. Since the section $[b, 1]$ is a λ-lattice, $x \wedge y$ is uniquely determined for each $x, y \in[b, 1]$. By Theorem 5 (in the section [b, 1]), we have $x \wedge y=\left(x^{b} \vee y^{b}\right)^{b}$. Moreover, also by Theorem 5 , for each $x, y \in[b, 1]$ it holds:

$$
\begin{aligned}
\left(x^{b} \vee y^{b}\right)^{b} & =\left(x^{b} \vee y^{b}\right) \circ b=((x \circ b) \vee(y \circ b)) \circ b \\
& =(((x \circ b) \circ(y \circ b)) \circ(y \circ b)) \circ b .
\end{aligned}
$$

Ortho λ-semilattices

By an ortholattice is meant an algebra $\mathcal{L}=\left(L ; \vee, \wedge,{ }^{\perp}, 0,1\right)$ where $(L ; \vee, \wedge, 0,1)$ is a bounded lattice, $x^{\perp \perp}=x, x \leq y \Rightarrow y^{\perp} \leq x^{\perp}$ and $x \wedge x^{\perp}=0$ (which is equivalent to $x \vee x^{\perp}=1$).
Hence, it is a complemented lattice where the operation ${ }^{\perp}$ of complementation is an antitone involution on L. We can generalize this concept as follows:

Definition 4. By an ortho λ-lattice is meant an algebra $\mathcal{L}=\left(L ; \vee, \wedge,{ }^{\perp}, 0,1\right)$ such that $(L ; \vee, \wedge, 0,1)$ is a bounded λ-lattice and $x \mapsto x^{\perp}$ is an antitone involution satisfying $x \vee x^{\perp}=1, x \wedge x^{\perp}=0$.
By an ortho λ-semilattice is meant a λ-semilattice with sectional antitone involutions $(A ; \vee)$ where all sections are ortho λ-lattices, i.e., for each $p \in A([p, 1] ; \leq)$ is an ortho λ-lattice, such that x^{p} is the orthocomplement of $x \in[p, 1]$ in this section.

Example 5. The following λ-lattice is an ortho λ-lattice and ortho λ-semilattice as well.

Fig. 3

The orthocomplementation in intervals $[x, 1]$ for $x \neq 0$ is determined uniquelly and for $x=0$ it is pointed in the diagram.

Theorem 7. Let $\mathcal{A}=(A ; \vee)$ be a λ-semilattice with sectional antitone involutions. Then \mathcal{A} is an ortho λ-semilattice if and only if the derived operation $x \circ y=(x \vee y)^{y}$ satisfies the identity

$$
\begin{equation*}
(((x \circ y) \circ y) \circ(x \circ y)) \circ(x \circ y)=1 . \tag{*}
\end{equation*}
$$

Proof. Obviously,

$$
\begin{aligned}
(((x \circ y) \circ y) \circ(x \circ y)) \circ(x \circ y) & =((x \circ y) \circ y) \vee(x \circ y) \\
& =((x \circ y) \circ y) \vee(((x \circ y) \circ y) \circ y) \\
& =(x \vee y) \vee(x \vee y)^{y},
\end{aligned}
$$

hence the identity $(*)$ can be rewritten as

$$
(x \vee y) \vee(x \vee y)^{y}=1
$$

Trivially, $x \vee y \in[y, 1]$ thus it is clear that in this case $a \vee a^{y}=1$ for each $a \in[y, 1]$. Since $y \in L\left(a, a^{y}\right)$, we have for the operation \wedge_{y}

$$
a \wedge_{y} a^{y}=\left(a^{y} \vee a^{y y}\right)^{y}=\left(a^{y} \vee a\right)^{y}=1^{y}=y
$$

thus a^{y} is an orthocomplement of a in $[y, 1]$.
Conversely, if \mathcal{A} is an ortho λ-semilattice and $x, y \in A$ then $x \vee y \in[y, 1]$ and hence

$$
(x \vee y) \vee(x \vee y)^{y}=1
$$

whence the identity is evident.
Due to Theorem 7 , the class \mathcal{O} of ortho λ-semilattices (considered in the signature $(\circ, 1)$) forms a variety.

Theorem 8. The variety \mathcal{O} of ortho λ-semilattices is weakly regular.
Proof. Let $t_{1}(x, y)=x \circ y$ and $t_{2}(x, y)=y \circ x$. Then $t_{1}(x, x)=t_{2}(x, x)=x \circ x=1$ and conversely, if $t_{1}(x, y)=t_{2}(x, y)=1$ then $x \circ y=1=y \circ x$ thus $x \leq y$ and $y \leq x$ whence $x=y$. Hence, t_{1}, t_{2} are Csákány's terms for weak regularity and hence \mathcal{O} is weakly regular.

References

[1] J. C. Abbott, Semi-boolean algebras, Matem. Vestnik, 4(1967), 177-198.
[2] G. Birkhoff, Lattice Theory, (3 ${ }^{r d}$ edition), Colloq. Publ., 25, Amer. Math. Soc., Providence, R. I., 1967.
[3] I. Chajda and M. Kolařík, Nearlattices, Discrete Math., submitted.
[4] J. Ježek and R. Quackenbush, Directoids: algebraic models of up-directed sets, Algebra Universalis, 27(1990), 49-69.
[5] V. Snášel, λ-lattices, Math. Bohem., 122(1997), 267-272.

