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Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw,
Poland
e-mail : kpioro@mimuw.edu.pl

Abstract. Let A be a locally finite total algebra of finite type such that kA(a1, . . . , an) 6=
ai for every operation kA, elements a1, . . . , an and 1 ≤ i ≤ n. We show that the weak

subalgebra lattice of A uniquely determines its (strong) subalgebra lattice. More precisely,

for any algebra B of the same finite type, if the weak subalgebra lattices of A and B are

isomorphic, then their subalgebra lattices are also isomorphic. Moreover, B is also total

and locally finite.

1. Introduction

A type of algebra is a pair 〈K, κ〉, where K is a set of operation symbols and κ
is an arity function from K into the set of all non-negative integers N. Note that
0−ary operation symbols k (i.e., κ(k) = 0) are just symbols of constants. 〈K, κ〉 is
a finite type if K is finite.

A partial algebra of (algebraic) type 〈K,κ〉 is a pair A = 〈A, (kA)k∈K〉, where A
is a set of elements of A and for any k ∈ K, kA : Aκ(k) −→ A is a κ(k)−ary partial
operation of A, i.e., kA is only defined on a subset of Aκ(k) (see e.g., [3] and [5]).
Taking total operations instead of partial ones we obtain the well-known definition
of a (total) algebra. More formally, a κ(k)−ary operation kA : Aκ(k) −→ A is total,
if kA(a1, . . . , aκ(k)) is defined for each (a1, . . . , aκ(k)) ∈ Aκ(k) (see e.g., [7] or [9]).
Of course, each total algebra is partial.

Recall also (see e.g., [9]) that a lattice L = 〈L,≤〉 is complete, if each subset
S ⊆ L has an infimum

∧
S and a supremum

∨
S. A complete lattice L is algebraic,

if each of its elements is the supremum of some set of compact elements. An element
c ∈ L is compact, if for each set S ⊆ L, c ≤ ∨

S implies c ≤ ∨
S0 for some finite

subset S0 ⊆ S.
The concept of subalgebra can be transported onto the partial case without

changes. Formally, we say that a subset B of elements of a (partial) algebra A =
〈A, (kA)k∈K〉 is closed under operations, if for any operation kA and each sequence
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(b1, . . . , bκ(k)) ∈ Bκ(k), if kA(b1, . . . , bκ(k)) is defined, then kA(b1, . . . , bκ(k)) ∈ B.
This set B together with operations of A restricted to B forms a subalgebra of
A. Such subalgebras will sometimes be called strong here to distinguish them from
other kinds of partial subalgebras which may be defined in the partial case (see e.g.,
[3] or [5]).

It is a classical fact, true also in the partial case, that the family of all strong
subalgebras of a (partial) algebra A with subalgebra inclusion ≤s, forms a lattice
Ss(A) = 〈Ss(A),≤s〉. This lattice is complete and algebraic (see e.g., [9]).

In particular, for any subset W ⊆ A of elements of A, there is the least strong
subalgebra containing W , which will be denoted by 〈W 〉A.

Recall that a partial algebra A is locally finite, if for each finite set W of elements
of A, 〈W 〉A is a finite subalgebra.

The lattice of subalgebras and connections between (total) algebras and their
subalgebra lattices are an important part of universal algebra and are also important
for classical algebras. For instance, there are many results describing subalgebra
lattices for algebras belonging to a given variety or a given type (see e.g., [9] or [10]),
some such questions are still open. Some authors investigate algebras or varieties of
algebras with special subalgebra lattices, e.g., distributive, modular, etc. (see e.g.,
[8], [15], [16]). Note also that some part of group theory investigates connections
between groups and their subgroup lattices (see [14]). For example recall the clas-
sical beautiful result due to Ore that a group has a distributive subgroup lattice if
and only if it is locally cyclic (i.e., each finitely generated subgroup is cyclic).

The theory of partial algebras provides additional tools for such investigations.
Besides the strong subalgebra, at least three different structures may be considered
in this case (see e.g., [3] or [5]). Here we consider only the concept of weak subalgebra
(it seems that it is the most important type of partial subalgebras) and the lattice of
weak subalgebras. This lattice alone, and also together with the strong subalgebra
lattice may yield some interesting information on partial and total algebras.

Let A = 〈A, (kA)k∈K〉 and B = 〈B, (kB)k∈K〉 be partial algebras of the same
type 〈K, κ〉. Recall that B is a weak subalgebra of A (which is denoted by B ≤w

A), if B ⊆ A and for each k ∈ K and any sequence (b1, . . . , bκ(k)) ∈ Bκ(k), if
kB(b1, . . . , bκ(k)) is defined (in B), then kA(b1, . . . , bκ(k)) is also defined (in A) and
kB(b1, . . . , bκ(k)) = kA(b1, . . . , bκ(k)). Equivalently, we can say that B ⊆ A and
kB ⊆ kA for any k ∈ K.

The family of all weak subalgebras of a partial algebra A with weak subalgebra
inclusion ≤w, also forms a lattice Sw(A) = 〈Sw(A),≤w〉 which is complete and
algebraic. A complete characterization of the weak subalgebra lattice is given in
[1].

An interesting property of the weak subalgebra lattice is proved in [11]. More
precisely, for any locally finite total unary algebra of finite type, its weak subalgebra
lattice uniquely determines its strong subalgebra lattice. In the present paper we
generalize this result for arbitrary locally finite total algebras A = 〈A, (kA)k∈K〉
of finite type 〈K,κ〉 such that kA(a1, . . . , aκ(k)) 6= ai for each k ∈ K, any
a1, . . . , aκ(k) ∈ A and 1 ≤ i ≤ κ(k).
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2. Basic facts

Papers [12] and [13] give some connections between algebras and hypergraphs,
which will be useful in our investigation. More precisely, in this section we trans-
late our algebraic problem into a hypergraph one, which will be solved in the next
section. But first we recall some facts from these two papers.

Since we use hypergraphs to represent algebras, vertex and hyperedge sets may
have arbitrary cardinality, and also multiple hyperedges and isolated vertices are
admitted. Therefore we will use a slightly more formal definition than usual (see
e.g., [4]).

An (undirected) hypergraph H is represented by a triple 〈V H, EH, IH〉, where
V H is the vertex set of H, EH is the hyperedge set of H and IH is the incidence
function of H i.e., IH is a function from EH into the set of all non-empty and finite
subsets of V H (for any e ∈ EH, IH(e) is the set of all the endpoints of e).

We also need the concept of directed hypergraph, which is a simple generaliza-
tion of a directed graph.

Definition 2.1. A dihypergraph (directed hypergraph) D is a triple 〈V D, ED, ID〉
such that V D is the vertex set of D, ED is the hyperedge set of D and ID = 〈ID

1 , ID
2 〉

is the incidence function, i.e., ID
1 is a function from ED into the family of all fi-

nite (also empty) subsets of V D and ID
2 is a function from ED into V D. For any

hyperedge e ∈ EH, ID
1 (e) is the initial set of e and ID

2 (e) is the final vertex of e.

Let D be a dihypergraph and e ∈ ED its hyperedge. Then e is said to be a
hyperloop, if its final vertex belongs to its initial set (i.e., ID

2 (e) ∈ ID
1 (e)), otherwise

e is regular. The set of all regular hyperedges is denoted by ED
reg, and the set of all

hyperloops by ED
lo .

Further, we say that e is a k−edge, if its initial set ID
1 (e) has exactly k vertices

(i.e., |ID
1 (e)| = k). A hyperloop that is a k−edge is a k−loop. ED(k) denotes the

set of all the k−edges of D.
By our definition, dihypergraphs may contain 0−edges, i.e., hyperedges e such

that ID
1 (e) = ∅. Observe that 0−edges can be identified, similarly as for algebras,

with their final vertices, and therefore they are sometimes called constants, too.
For any dihypergraph D, let D∗ = 〈V D∗ , ED∗ , ID∗〉 be a hypergraph obtained

from D by omitting the orientation of all the hyperedges, i.e.,

V D∗ = V D, ED∗ = ED and ID∗(e) = ID
1 (e) ∪ {ID

2 (e)} for each e ∈ ED.

With any partial algebra A = 〈A, (kA)k∈K〉 we can associate a dihypergraph
D(A). Recall (see [12]) that A is the vertex set of D(A), i.e.,

V D(A) = A

and hyperedges of D(A) are directed triples 〈Va, k, kA(a)〉 such that kA is a
κ(k)−ary operation of A, a = (a1, . . . , aκ(k)) ∈ Aκ(k) is a κ(k)−element sequence,
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Va = {a1, . . . , aκ(k)} is the set of all the pairwise different elements of a and the
partial operation kA is defined on a, i.e.,

ED(A) = {〈Va, k, kA(a)〉 : k ∈ K, a = (a1, . . . , aκ(k)) ∈ Aκ(k),

Va = {a1, . . . , aκ(k)}, kA is defined on a}.
For any hyperedge 〈Va, k, kA(a)〉, Va is the initial set of e and kA(a) is the final
vertex of e, i.e.,

I
D(A)
1 (〈Va, k, kA(a)〉) = Va and I

D(A)
2 (〈Va, k, kA(a)〉) = kA(a).

Note that if cA is a constant defined in A, then it is represented by a 0−edge of
the form 〈∅, c, cA〉, where c ∈ K is the constant symbol corresponding to cA. Note
also that D(A) can be considered as a dihypergraph labelled by the set K.

We can also associate with A the (undirected) hypergraph D(A)∗.

The following result immediately follows from the above definitions.

Lemma 2.2 Let A be a partial algebra of type 〈K, κ〉. The following conditions are
equivalent:

(a) D(A) has no hyperloops,

(b) for any k ∈ K, elements a1, . . . , aκ(k) ∈ A and i = 1, 2, . . . , κ(k),
kA(a1, . . . , aκ(k)) 6= ai.

Let D be a dihypergraph. For each finite subset V ⊆ V D, let

ED
s (V ) = {e ∈ ED : ID

1 (e) = V } and sD = |ED
s (V )|.

Observe that ED
s (∅) contains all the constants of D.

D is said to be of (dihypergraph) type τ (see [12]), where τ = (τ0, τ1, . . .) is a
sequence of cardinal numbers, if

sD(V ) ≤ τ|V | for any finite set V ⊆ V D.

A (dihypergraph) type τ is finite, if each of its elements is a non-negative integer,
i.e., τ ∈ NN. A finite type τ is totally finite, if almost all of its terms are zero, i.e.,
there is m ∈ N such that τi = 0 for i ≥ m.

We say that a dihypergraph D of finite type τ is total, if sD(V ) = τ|V | for any
finite V ⊆ V D.

It is shown in [13] that if A is an algebra of type 〈K,κ〉, then D(A) is a
dihypergraph of type T(K,κ) = (T0(K,κ), T1(K, κ), T2(K,κ), . . .), where

Ti(K, κ) =
∑

m≥i sur(m, i) · |κ−1(m)| for any i ∈ N.
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Here sur(m, i) is the number of all the surjections from an m−element set onto an
i−element set.

Note that T0(K, κ) = |κ−1(0)|, because sur(0, 0) = 1 and sur(m, 0) = 0 for
m ≥ 1. Moreover, if 〈K,κ〉 is a finite algebraic type (i.e., K is a finite set), then
T(K, κ) is totally finite.

It is also easy to see that the following fact holds (the assumption that 〈K, κ〉
is finite, is necessary for the implication ⇐=).

Lemma 2.3. A partial algebra A of finite type 〈K, κ〉 is total if and only if D(A)
is a total dihypergraph of finite type T(K,κ) (i.e., sD(A)(V ) = T|V |(K,κ) for each
finite set of vertices V ).

We use subhypergraphs to represent weak subalgebras, therefore we slightly
modify the concept of subhypergraph from [4].

More precisely, let D and G be dihypergraphs. G is a subdihypergraph of D
(see [12]), if

V G ⊆ V D, EG ⊆ ED and IG(e) = ID(e) for any e ∈ EG.

Such subdihypergraphs are called here weak to stress their relation to weak subal-
gebras.

In an analogous way as for partial algebras we obtain (see also [12]) that the set
of all the weak subdihypergraphs of a dihypergraph D with weak subdihypergraph
inclusion ≤w, forms a complete and algebraic lattice Sw(D) = 〈Sw(D),≤w〉. Note
that a full characterization (in lattice language) of this lattice is the same as that
of the weak subalgebra lattice (see [12] for details).

To represent (strong) subalgebras we need the concept of strong subdihyper-
graph from [12]. A weak subdihypergraph G of a dihypergraph D is said to be
strong, if G contains all the hyperedges starting from G, i.e., for any hyperedge
e ∈ ED, if ID

1 (e) ⊆ V G, then e ∈ EG.
It can be shown in the same way as for total algebras (see [12] for details) that

the set of all the strong subdihypergraphs of a dihypergraph D with strong subdihy-
pergraph inclusion ≤s forms a complete and algebraic lattice Ss(D) = 〈Ss(D),≤s〉.

In particular, we have that for any subset W ⊆ V D there is the least strong
subdihypergraph of D containing W , which will be denoted by 〈W 〉D.

Thus similarly as for algebras, we can say that a dihypergraph D is locally finite,
if for any finite set of vertices W ⊆ V D, 〈W 〉D is also finite (i.e., has finitely many
vertices).

It is easy to see that if B is a weak (respectively, strong) subalgebra of a partial
algebra A, then its dihypergraph D(B) is a weak (respectively, strong) subdihyper-
graph of D(A). Further,

Theorem 2.4. Let A be a partial algebra. Then

Sw(A) ' Sw(D(A)) and Ss(A) ' Ss(D(A)).



200 Konrad Pióro

This result is obtained in [12] by a direct verification that the function assigning
to each strong (respectively weak) subalgebra B of A its dihypergraph D(B), is an
isomorphism of lattices. As a simple consequence of this proof, it is also obtained
in [12] that for each set B of elements of A,

D(〈B〉A) = 〈B〉D(A)

(where 〈B〉A is the least strong subalgebra of A containing B). Thus

Corollary 2.5. A partial algebra A is locally finite if and only if D(A) is locally
finite.

The following result fundamental for our investigation, is also proved in [12] (its
proof is more complicated than the proofs of the previous results)

Theorem 2.6. For arbitrary partial algebras A and B (which can even be of
different types),

Sw(A) ' Sw(B) iff D(A)∗ ' D(B)∗.

3. Main results

Results from the previous section reduce our algebraic problem to a hypergraph
one. Algebras A and B of finite type can be replaced by dihypergraphs D and H of
totally finite (dihypergraph) type. The other algebraic assumptions are translated in
the following way: D is a total and locally finite dihypergraph without hyperloops,
and hypergraphs D∗ and H∗ are isomorphic. We will prove that then the strong
subdihypergraph lattices Ss(D) and Ss(H) are isomorphic, and H is also total and
locally finite without hyperloops.

For a digraph we can invert the orientation of some edges to obtain a new
digraph. But the orientation of directed hyperedges can be changed in more than
one way, in general. Therefore we need here the following analogous construction
for dihypergraphs.

Let D be a dihypergraph. Let F ⊆ ED
reg \ ED(0) and U = {uf ∈ V D : f ∈

F} ⊆ V D be sets such that

uf ∈ ID
1 (f) for each f ∈ F .

Then D(F, U) is the dihypergraph obtained from D by inverting the orientation of
all the hyperedges from F ”according” to U , i.e.,

V D(F,U) = V D, ED(F,U) = ED, ID(F,U)(e) = ID(e) for any e ∈ ED \ F

and

I
D(F,U)
1 (f) = (ID

1 (f) \ {uf}) ∪ {ID
2 (f)}, I

D(F,U)
2 (f) = uf for each f ∈ F .
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Clearly,
D(F,U)∗ = D∗.

For dihypergraphs without hyperloops the inverse result also holds.

Lemma 3.1. Let D and H be dihypergraphs without hyperloops such that D∗ ' H∗.
Then H ' D(F,U) for some sets F ⊆ ED

reg \ ED(0) and U = {uf : f ∈ F} ⊆ V D

such that uf ∈ ID
1 (f) for each f ∈ F .

Proof. Each undirected hyperedge of D∗ and of H∗ with exactly k + 1 vertices is
the image of a k−edge of D or of H respectively, under ∗, because D and H do not
have hyperloops. Let ϕ be an isomorphism of D∗ and H∗. Take F =

{
e ∈ ED :

ϕ
(
ID
2 (e)

) 6= IH
2

(
ϕ(e)

)}
, uf = ϕ−1(IH

2 (ϕ(f))) for any f ∈ F and U = {uf : f ∈ F}.
F does not contain 0−edges, because ID∗(e) = {ID

2 (e)} for a 0−edge e. Next,
uf ∈ ID

1 (f) for f ∈ F and ϕ(ID
2 (e)) = IH

2 (ϕ(e)) for any hyperedge e outside F . By
these facts it easily follows that ϕ is an isomorphism of dihypergraphs D(F, U) and
H. 2

This lemma is not true for dihypergraphs with hyperloops. For instance, take
two dihypergraphs with three vertices and one hyperedge which is a regular 2−edge
in the first and a 3−loop in the second.

Let D be a dihypergraph, k ∈ N \ {0} and r = (e1, . . . , em) be a sequence of
k−edges of D. We say that r is a k−chain, if for each 1 ≤ i ≤ m− 1,

ID
2 (ei) ∈ ID

1 (ei+1) ⊆ ID
1 (ei) ∪ {ID

2 (ei)}.

If additionally
ID
2 (em) ∈ ID

1 (e1) ⊆ ID
1 (em) ∪ {ID

2 (em)},
then r is said to be a k−cycle.

We denote the set of all the hyperedges of r by Er.
A k−chain (a k−cycle) r = (e1, . . . , em) is a k−path (a simple k−cycle), if

e1, . . . , em are pairwise different regular k−edges.
We say that a k−chain r = (e1, . . . , em) starts from a set W ⊆ V D (where W has

at least k vertices), if ID
1 (e1) ⊆ W . Similarly, r ends in a vertex v, if ID

2 (em) = v.
We say that a sequence of hyperedges is a hyperchain (respectively, a hyperpath,

a hypercycle), if it is a k−chain (respectively, a k−path, a k−cycle) for some k ∈
N \ {0}. Of course for k = 1 we obtain ordinary directed chains, paths and cycles
as in graph theory.

Definition 3.2. Let D be a dihypergraph and W ⊆ V D be a set of vertices. Then

(a) [W ]qs
D is a weak subdihypergraph of D consisting of W and of all the hyper-

edges (and their endpoints) of all the hyperchains (e1, . . . , em) starting from
W .

(b) A dihypergraph D is said to be weakly-locally finite, if for any finite subset
U ⊆ V D, [U ]qs

D is finite (i.e., has finitely many vertices).
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(c) An algebra is weakly-locally finite, if its dihypergraph is weakly-locally finite.

For any vertex v of [W ]qs
D , if v 6∈ W , then there is a hyperchain (e1, . . . , ei)

starting from W and ending in v. It is sufficient to take the shortest possible
hyperchain containing v.

[W ]qs
D is contained in 〈W 〉D, so local finiteness forces weakly-local finite-

ness. For directed graphs, these two concepts are equivalent, because in this
case [W ]qs

D = 〈W 〉D. But generally they are not equal, and consequently the
weakly-local finiteness is indeed a weaker condition. For example, take D with
V D = {a0, b0, a1, b1, . . .}, ED = {e0, f0, e1, f1, . . .} and ID(ei) = 〈{ai, bi}, ai+1〉,
ID(fi) = 〈{ai, bi}, bi+1〉 for each i ∈ N. Then 〈{a0, b0}〉D = D, so D is not locally
finite. On the other hand, D has only one–element hyperchains, so D is weakly–
locally finite.

Let R be a family of pairwise hyperedge-disjoint simple hypercycles of a dihy-
pergraph D (note that R may contain k−cycles for different k). For a hyperedge
e ∈ ER =

⋃
r∈R Er we take exactly one hypercycle (e1, . . . , em) ∈ R such that e = ei

for exactly one 1 ≤ i ≤ m. Next, we take a vertex u(e) ∈ ID
1 (ei) \ ID

1 (ei+1) which
is uniquely determined, because |ID

1 (ei) \ ID
1 (ei+1)| = 1. In this way we obtain a

new dihypergraph

D(R) = D(ER, U), where U = {u(e) : e ∈ ER} and ER =
⋃

r∈R Er.

For any (e1, . . . , em) ∈ R we have (where em+1 = e1)

I
D(R)
1 (ei) = (ID

1 (ei) \ {u(ei)}) ∪ ID
2 (ei) = ID

1 (ei+1) and I
D(R)
2 (ei) = u(ei).

So (em, . . . , e1) is a simple hypercycle in D(R).
Because I

D(R)
1 (ei)\ID(R)

1 (ei−1) = ID
1 (ei+1)\ID

1 (ei) = {ID
2 (ei)}, it is not difficult

to show that
D(R)(R) = D,

where R = {(em, . . . , e1) : (e1, . . . , em) ∈ R}.
Lemma 3.3. Let D be a dihypergraph and R be a family of pairwise hyperedge–
disjoint simple hypercycles of D. Then

(a) sD(R)(V ) = sD(V ) for each finite V ⊆ V D.

(b) V
[W ]qs

D(R) = V [W ]qs
D and E

[W ]qs
D(R) = E[W ]qs

D for each W ⊆ V D.

Proof. (a): Take a finite set V ⊆ V D and r = (e1, . . . , em) ∈ R. Then ei+1 starts
from V in D iff ei starts from V in D(R) for i = 0, . . . ,m − 1 (where e0 = em).
Thus, since e1, . . . , em are pairwise different,

|ED
s (V ) ∩ Er| = |ED(R)

s (V ) ∩ Er|.
And consequently, since R contains pairwise hyperedge–disjoint hypercycles,

|ED
s (V ) ∩ ER| = |ED(R)

s (V ) ∩ ER|.
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Hence we obtain (a), because ED
s (V ) \ ER = E

D(R)
s (V ) \ ER by the definition of

D(R).
(b): We first prove that for any W ⊆ V D,

E[W ]qs
D ⊆ E

[W ]qs
D(R) .

It is sufficient to show that for any k−chain (f1, . . . , fn) of D starting from W ,

{f1, . . . , fn} ⊆ E
[W ]qs

D(R) .

If {f1, . . . , fn} ∩ ER = ∅, then (f1, . . . , fn) is also a hyperchain of D(R) starting
from W , so f1, . . . , fn belong to [W ]qs

D(R).
Thus we can assume {f1, . . . , fn} ∩ ER 6= ∅. Assume also that exactly one

hyperedge, say, fi, belongs to ER. The proof of the general case (when several
hyperedges of (f1, . . . , fn) are contained in some hypercycles of R, each of these
hypercycles may contain more than one hyperedge of (f1, . . . , fn)) is only more
technically complicated.

Take a k−cycle (e1, . . . , em) ∈ R containing fi. We can assume fi = e1 (by
changing the numeration of e1, . . . , em, if necessary).

Since I
D(R)
1 (em) = ID

1 (e1) = ID
1 (fi), the sequence (f1, . . . , fi−1, em, . . . , e1) is a

hyperchain in D(R) starting from W (if i = 1 we just take (em, . . . , e1)). So

fi = e1 ∈ E
[W ]qs

D(R) .

Let A = ID
1 (fi+1).

If ID
1 (e2) = A, then it is easy to see that (f1, . . . , fi−1, em, . . . , e2, fi+1, . . . , fn) is

a hyperchain of D(R) starting from W . This is because I
D(R)
1 (fi+1) = ID

1 (fi+1) =
ID
1 (e2) = I

D(R)
1 (e1) and (em, . . . , e2, e1) is a hypercycle in D(R).

If ID
1 (e2) 6= A (this is possible for k−chains with k ≥ 2), then

A ⊆ ID∗(fi) = ID∗(e1) = ID(R)∗(e1) = I
D(R)
1 (e1) ∪ {ID(R)

2 (e1)}.

Hence, because I
D(R)
1 (e1) = ID

1 (e2) 6= A, we have also

I
D(R)
2 (e1) ∈ A.

Thus in this case (f1, . . . , fi−1, em, . . . , e1, fi+1, . . . , fn) is a hyperchain of D(R)
starting from W .

Now, since D(R)(R) = D, where R = {(em, . . . , e1) : (e1, . . . , em) ∈ R}, we
can apply the previously proved inclusion to dihypergraphs D(R) and D(R)(R) to
obtain the inverse inclusion

E
[W ]qs

D(R) ⊆ E
[W ]qs

D(R)(R) = E[W ]qs
D

which completes the proof of (b) (because the first equality follows from the second).
2
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In the proof of the next result we will use the following technical definition. Let
f1, . . . , fm be regular k−edges of a dihypergraph D (where k ∈ N \ {0}) and let
v1, . . . , vm be vertices of D such that

vi ∈ ID
1 (fi) for all i = 1, . . . , m.

First, we say that a sequence r =
(〈f1, v1〉, . . . , 〈fm, vm〉

)
forms a k−chain, if for

each i = 1, . . . , m− 1

(ID
1 (fi) \ {vi}) ∪ {ID

2 (fi)} = ID
1 (fi+1).

Secondly, r forms a k−path, if r forms a k−chain and f1, . . . , fm are pairwise
different. Thirdly, r forms a simple k−cycle, if r forms a k−path and

(
ID
1 (fm) \

{vm}
) ∪ {ID

2 (fm)} = ID
1 (f1).

If r =
(〈f1, v1〉, . . . , 〈fm, vm〉

)
forms a k−chain, then (f1, . . . , fm) is a k−chain.

But it is easy to see that for k ≥ 2, the inverse implication is not true. Similarly, r
may form a k−path and (f1, . . . , fm) may be a simple k−cycle, but r does not form
a simple k−cycle.

We say (see also [13]) that a dihypergraph D is a k−dihypergraph (where k ∈ N),
if all hyperedges of D are k−edges, i.e., |ID

1 (e)| = k for each e ∈ ED.
A k−dihypergraph D is of k−type η (where η is a cardinal number), if

sD(V ) ≤ η for each k−element set V ⊆ V D.

D is of finite k−type n, if n is a non-negative integer.
We say that a k−dihypergraph D of finite k−type n is total, if sD(V ) = n for

each k−element set V ⊆ V D.

Lemma 3.4. Let a k−dihypergraph D (with k ∈ N \ {0}) and sets F ⊆ ED
reg and

U = {u(f) : f ∈ F}, where u(f) ∈ ID
1 (f) for each f ∈ F , satisfy the following

conditions:

(∗) D is a total k−dihypergraph of finite k−type n.

(∗∗) D is weakly-locally finite.

(∗ ∗ ∗) D(F,U) is a k−dihypergraph of finite k−type n.

Then there is a family R of pairwise hyperedge-disjoint simple k−cycles of D such
that

D(F, U) = D(R).

Proof. Let H = D(F, U) and assume F 6= ∅. It is sufficient to prove that the set{〈f, u(f)〉 : f ∈ F
}

can be divided into sequences
{(〈f i

1, u(f i
1)〉, . . . , 〈f i

mi
, u(f i

mi
)〉)}

i∈I
which are pairwise hyperedge-disjoint and each forms a simple k−cycle.

Take a k−element set V = {v1, . . . , vk} ⊆ V D and observe that

EH
s (V ) =

(
ED

s (V )\{e ∈ F : ID
1 (e) = V })∪{

e ∈ F :
(
ID
1 (e)\{u(e)})∪{ID

2 (e)} = V
}
.
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Hence,

|ED
s (V )| − ∣∣{e ∈ F : ID

1 (e) = V }∣∣ +
∣∣{e ∈ F :

(
ID
1 (e) \ {u(e)}) ∪ {ID

2 (e)} = V
}∣∣

= |EH
s (V )|

≤ n = |ED
s (V )|,

because D and H are of finite k−type n and D is total.
Thus for each k−element set V ⊆ V D,

(1)
∣∣{e ∈ F :

(
ID
1 (e) \ {u(e)}) ∪ {ID

2 (e)} = V
}∣∣ ≤

∣∣{e ∈ F : ID
1 (e) = V

}∣∣.

For any h ∈ F , let Kh be the subdihypergraph of D containing all the sequences
(f1, . . . , fm) such that {f1, . . . , fm} ⊆ F , ID

1 (f1) = ID
1 (h) and

(〈f1, u(f1)〉, . . . , 〈fm, u(fm)〉)
forms a k−chain.

Then h ∈ EKh , and Kh is a weak subdihypergraph of [W ]qs
D . By (∗∗), [W ]qs

D is
finite, so Kh is also finite. Hence Kh has only finitely many hyperedges, because
Kh (being a subdihypergraph of D) is of finite k−type n.

Let f ∈ EKh and Vf = (ID
1 (f) \ {u(f)}) ∪ {ID

2 (f)}. Then

EKh
s (Vf ) = {e ∈ F : ID

1 (e) = Vf}.

The inclusion ⊆ is obvious. Take e ∈ F such that ID
1 (e) = Vf . Since f ∈

EKh , there is a sequence (〈f1, u(f1)〉, . . . , 〈fm, u(fm)〉) forming a k−chain such
that f1, . . . , fm ∈ F , ID

1 (f1) = ID
1 (h) and f = fm. By the definition of Vf ,

(〈f1, u(f1)〉, . . . , 〈fm, u(fm)〉, 〈e, u(e)〉) also forms such a k−chain. Hence e ∈ EKh ,
so e ∈ EKh

s (Vf ).
Since EKh ⊆ F , the above equality and (1) imply that for any f ∈ EKh ,

(2)
∣∣{e ∈ EKh :

(
ID
1 (e) \ {u(e)}) ∪ {ID

2 (e)} = Vf

}∣∣ ≤ ∣∣EKh
s (Vf )

∣∣.

Now we prove that there is a sequence (〈f1, u(f1)〉, . . . , 〈fp, u(fp)〉) forming a simple
k−cycle and containing all the k−edges of Kh.

The family S of all sequences which form k−paths in Kh starting from ID
1 (h)

is non–empty (because it contains the one–element sequence 〈h, u(h)〉) and fi-
nite (because Kh has only finitely many k−edges). Thus we can take r =
(〈f1, u(f1)〉, . . . , 〈fp, u(fp)〉) ∈ S with maximal length.

First, r is a simple k−cycle. Assume otherwise that ID
1 (f1) 6= W , where W =(

ID
1 (fp) \ {u(fp)}

) ∪ {
ID
2 (fp)

}
. Observe that fi (for i ≤ p − 1) ends in W (i.e.,

ID
1 (fi)\{u(fi)}∪ID

2 (fi) = W ) if and only if fi+1 starts from W (i.e., ID
1 (fi+1) = W ).

Hence, and by the assumption, since f1, . . . , fp are pairwise different, we obtain that
the number of all the k−edges of r ending in W is greater than the number of all
the k−edges of r starting from W . Thus by (2) there is a k−edge f starting from
W that does not belong to r. But then (〈f1, u(f1)〉, . . . , 〈fp, u(fp)〉, 〈f, u(f)〉) forms
a k−path in Kh starting from ID

1 (h) and its length is p + 1, which is impossible.
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Secondly,
{f1, . . . , fp} = EKh .

Assume otherwise that there is a k−edge f of EKh such that f 6∈ {f1, . . . , fp}. Then
by the definition of Kh, there is a sequence (〈e1, u(e1)〉, . . . , 〈em, u(em)〉) forming a
k−chain such that em = f and ID

1 (e1) = ID
1 (h) = ID

1 (f1). Take the first k−edge
of (e1, . . . , em), say, g = ej , which does not belong to r. Next, let fi0 be a regular
k−edge of r such that

fi0 =
{

ej−1 if j ≥ 2,
fp if j = 1.

Then we have

(3) ID
2 (fi0) ∈ ID

1 (g) ⊆ ID
1 (fi0) ∪ {ID

2 (fi0)}

(if j = 1, then ID
1 (g) = ID

1 (h) = ID
1 (f1), so we use the fact that r is a simple

k−cycle).
Observe that Kg is contained in Kh. If j = 1 (i.e., g = e1), then ID

1 (g) = ID
1 (h),

so Kg = Kh. If j ≥ 2, then for each (〈a1, u(a1)〉, . . . , 〈al, u(al)〉) starting from ID
1 (g)

we have (by (3)) that (〈f1, u(f1)〉, . . . , 〈fi0 , u(fi0)〉, 〈a1, u(a1)〉, . . . , 〈al, u(al)〉) forms
a k−chain starting from ID

1 (h).
Let K be a k−dihypergraph consisting of all the sequences (e1, . . . , em) such that

ID
1 (e1) = ID

1 (g), {e1, . . . , em} ⊆ F \ {f1, . . . , fp} and
(〈e1, u(e1)〉, . . . , 〈em, u(em)〉)

forms a k−chain. Obviously g ∈ EK.
Take a k−element set V ⊆ V D. Since r forms a simple k−cycle, we deduce that

the number of all the k−edges of r starting from V equals the number of all the
k−edges of r ending in V . Hence

∣∣{e ∈ F :
(
ID
1 (e) \ {u(e)}) ∪ {ID

2 (e)} = V
} ∩ {f1, . . . , fp}

∣∣
=

∣∣{e ∈ F : ID
1 (e) = V

} ∩ {f1, . . . , fp}
∣∣.

Thus by (1),

|{e ∈ F : (ID
1 (e)\{u(e)})∪{ID

2 (e)} = V }\{f1, . . . , fp}| ≤ |{e ∈ F : ID
1 (e) = V }\{f1, . . . , fp}|.

In exactly the same way as for Kh we can prove that for each f ∈ EK,

EK
s (Vf ) = {e ∈ F : ID

1 (e) = Vf} \ {f1, . . . , fp},

where Vf = (ID
1 (f) \ {u(f)}) ∪ {ID

2 (f)}.
Since EK ⊆ F \ {f1, . . . , fp}, the above two facts imply

|{e ∈ EK : (ID
1 (e) \ {u(e)}) ∪ {ID

2 (e)} = Vf}| ≤ |EK
s (Vf )|.

Using this inequality it can be shown, in the same way as for Kh, that there is a
sequence 〈f1, u(f1)〉, . . . , 〈fq, u(fq)〉) which forms a simple k−cycle in K starting
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from ID
1 (g). Then by (3), (〈f1, u(f1)〉, . . . , 〈fi0 , u(fi0)〉, 〈f1, u(f1)〉, . . . , 〈fq, u(fq)〉,

〈fi0+1, u(fi0+1)〉, . . . , 〈fp, u(fp)〉) forms a simple k−cycle starting from ID
1 (h) and

its length is q + p > p. But this is impossible, so r contains all the k−edges of Kh.
Take now two k−edges e, f ∈ F and their dihypergraphs Ke, Kf . Let

(〈e1, u(e1)〉, . . . , 〈em, u(em)〉) and (〈f1, u(f1)〉, . . . , 〈fl, u(fl)〉) be simple k−cycles
that start from ID

1 (e) and ID
1 (f), respectively, and contain all the k−edges of Ke

and Kf .
Assume that ei = fj for some 1 ≤ i ≤ m, 1 ≤ j ≤ l. Then (〈e1, u(e1)〉,

. . . , 〈ei, u(ei)〉, 〈fj+1, u(fj+1)〉, . . . , 〈fl, u(fl)〉, 〈f1, u(f1)〉, . . . , 〈fj , u(fj)〉) forms a
k−chain starting from ID

1 (e) (if j = l, then we take fj+1 = f1). Hence EKf =
{f1, . . . , fl} ⊆ EKe . Analogously {e1, . . . , em} ⊆ EKf , so EKe = EKf .

Thus we have shown that for any e, f ∈ F the dihypergraphs Ke and Kf

are hyperedge-disjoint or have the same sets of hyperedges (i.e., they are equal).
Now to end the proof it is sufficient to take all the pairwise different dihyper-
graphs of the form Kf , where f ∈ F . Next, for each of these dihypergraphs we
take (〈f1, u(f1)〉, . . . , 〈fp, u(fp)〉) that forms a simple k−cycle and contains all its
k−edges. 2

Lemma 3.5. Let D be a total weakly–locally finite dihypergraph of totally finite
type τ without hyperloops. Let H be a dihypergraph of type τ such that D∗ ' H∗.
Then H has no hyperloops.

Proof. Assume that τ is a non–zero sequence. Otherwise D and H are dihyper-
graphs without hyperedges. Thus since τ is a totally finite type, there is M ∈ N
such that τi = 0 for i ≥ M + 1 and τM ∈ N \ {0}. Then D and H have no i−edges
for i ≥ M + 1, in particular H has no (M + 1)−loops.

Take weak subdihypergraphs D1, H1 of D and H, respectively, consisting of
all the vertices and regular M−edges. Then D1 and H1 are M−dihypergraphs of
M−type τM . D1 is weakly–locally finite. Since D has no hyperloops, D1 contains
all the M−edges of D, and in particular, D1 is total.

Since D and H have no (M + 1)−loops, each hyperedge of D∗ and of H∗ with
exactly M + 1 endpoints is the image of a regular M−edge under ∗. Thus D∗

1 and
H∗

1 are subhypergraphs of D∗ and H∗, respectively, containing all the hyperedges
with exactly M + 1 endpoints. Hence we infer D∗

1 ' H∗
1. Since D1, H1 are

M−dihypergraphs without hyperloops, we can apply Lemmas 3.1, 3.4. Thus H1 '
D1(R1), where R1 is a family of pairwise hyperedge–disjoint simple M−cycles. This
fact and Lemma 3.3 imply sH1(V ) = sD1(V ) = τM for each M−element V ⊆ V H.
Hence we deduce that H1 contains all the M−edges of H, because H is of type τ
and τM is a natural number. Thus H has no M−loops.

Now, take subdihypergraphs D2, H2 of D and H, respectively, consisting of all
the regular (M − 1)−edges. Using the fact that D and H have no M−loops, we
can show in exactly the same way as above that H2 contains all the (M −1)−edges
of H, and consequently, H has no (M − 1)−loops.

Thus by simple induction we obtain that H has no hyperloops. 2
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The above fact is not true for finite types that are not totally finite. For example,
take a finite type (1, 1, 1, . . .) and let D be an infinite total dihypergraph without
hyperloops of this type. We construct the dihypergraph H in the following way:
Exactly one constant (i.e., 0−edge) e0 of D is replaced by a loop f0 in this vertex
(i.e., IH

1 (f0) = {ID
2 (e0)} and IH

2 (f0) = ID
2 (e0)). Exactly one 1−edge e1 of D

starting from IH
1 (f0) is replaced by a 2−loop f1 with endpoints of e1 (i.e., IH

1 (f1) =
ID
1 (e1) ∪ {ID

2 (e1)} and IH
2 (f1) = ID

2 (e1)). And so on. It is easy to see that H is
also of type (1, 1, 1, . . .) and H∗ ' D∗. Obviously H is not total (for example, it
has no 0−edges).

Theorem 3.6. Let dihypergraphs D and H satisfy the following conditions:

(∗) D∗ ' H∗,

(∗∗) D is a total weakly–locally finite dihypergraph of totally finite type τ without
hyperloops,

(∗∗∗) H is a dihypergraph of totally finite type τ .

Then

(a) Ss(H) ' Ss(D).

(b) H is also a total weakly–locally finite dihypergraph of totally finite type τ
without hyperloops.

(c) If D is locally finite, then H is also locally finite.

Proof. By Lemma 3.5, H has no hyperloops either. So by Lemma 3.1, there are
F ⊆ ED

reg \ ED(0) and U = {u(f) : f ∈ F} ⊆ V D such that u(f) ∈ ID
1 (f) for any

f ∈ F and
H ' D(F,U).

For each k ∈ N \ {0}, let Dk be a weak subdihypergraph of D consisting of all the
vertices and k−edges of D. Then Dk is a total weakly–locally finite k−dihypergraph
of k−type τk.

Next, let Fk be the set of all the k−edges of F and Uk = {u(f) : f ∈ Fk}. Then
Fk ⊆ EDk , Uk ⊆ V Dk and Fk ∩ Fl = ∅ for k 6= l. Further, the k−dihypergraph
Dk(Fk, Uk) is a weak subdihypergraph of D(F, U). Thus Dk(Fk, Uk) is of k−type
τk. Applying Lemma 3.4 we obtain

Dk(Fk, Uk) = Dk(Rk),

where Rk is a family of pairwise hyperedge–disjoint simple k−cycles of Dk, and
thus also of D.

Let R =
⋃

k∈N\{0}Rk. Rk and Rl are disjoint for k 6= l, because sets of k−edges
and of l−edges are disjoint for k 6= l. Thus R is a family of pairwise hyperedge–
disjoint simple hypercycles of D. And by the above equality we infer

D(F, U) = D(R).
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Hence and by Lemma 3.3, H is a total weakly–locally finite dihypergraph of totally
finite type τ .

Take now a strong subdihypergraph K of D. If (f1, . . . , fm) is a hypercycle such
that ID

1 (fi) ⊆ V K for some 1 ≤ i ≤ m, then {f1, . . . , fm} ⊆ EK. As ID
1 (fi) ⊆ V K

implies ID
2 (fi) ∈ V K, we have ID

1 (fi+1) ⊆ ID
1 (fi)∪

{
ID
2 (fi)

} ⊆ V K (where fm+1 =
f1) and so on.

Let K be a weak subdihypergraph of D(R) consisting of all the vertices and
hyperedges of K. Take a hyperedge e starting from K, i.e., I

D(R)
1 (e) ⊆ V K = V K.

If e 6∈ ER, then e starts from V K also in D, so e ∈ EK = EK. If e ∈ ER, then
e = fi for some (f1, . . . , fm) ∈ R. Since ID

1 (fi+1) = I
D(R)
1 (e) (here fm+1 = f1),

the whole hypercycle belongs to K, and thus also to K. In particular, e ∈ EK.
Summarizing, K is a strong subdihypergraph of D(R).

It is also easy to show (see [12]) that for any strong subdihypergraphs K1 and
K2 of any dihypergraph H, K1 is a strong subdihypergraph of K2 iff V K1 ⊆ V K2 .
In particular, K1 = K2 iff V K1 = V K2 . Thus the function ϕ : Ss(D) −→ Ss(D(R))
such that ϕ(K) = K, is injective and preserves the strong subdihypergraph inclusion
≤s.

R =
{
(em, . . . , e1) : (e1, . . . , em) ∈ R

}
is a family of hypercycles of D(R) and

D = D(R)(R). So we can apply the above results (proved for D and R) to D(R)
and R. In this way we obtain that the function ψ : Ss(D(R)) −→ Ss(D) defined
analogously as ϕ, is injective and preserves ≤s. Moreover, ϕ ◦ ψ and ψ ◦ ϕ are
identities. This shows that ϕ is an isomorphism of lattices Ss(D) and Ss

(
D(R)

)
.

By the definition of ϕ we also have (c). 2

Corollary 3.7.Let A = 〈A, (kA)k∈K〉 and B = 〈B, (kB)k∈K〉 be algebras of finite
type 〈K, κ〉 such that

(∗) Sw(B) ' Sw(A),

(∗∗) A is a total weakly–locally finite algebra,

(∗∗∗) for each k ∈ K, a1, . . . , aκ(k) ∈ A and 1 ≤ i ≤ κ(k), kA(a1, . . . , aκ(k)) 6= ai.

Then

(a) Ss(B) ' Ss(A),

(b) B is a total weakly–locally finite algebra.

(c) For each k ∈ K, b1, . . . , bκ(k) ∈ B and 1 ≤ i ≤ κ(k), kB(b1, . . . , bκ(k)) 6= bi.

Proof. The proof follows directly from Lemmas 2.2, 2.3, Theorems 2.4, 2.6, 3.6 and
Corollary 2.5. 2

Corollary 3.8. Let A = 〈A, (kA)k∈K〉 and B = 〈B, (kB)k∈K〉 be algebras of finite
type 〈K, κ〉 such that

(∗) Sw(B) ' Sw(A),
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(∗∗) A is a locally finite total algebra,

(∗∗∗) for each k ∈ K, a1, . . . , aκ(k) ∈ A and 1 ≤ i ≤ κ(k), kA(a1, . . . , aκ(k)) 6= ai.

Then

(a) Ss(B) ' Ss(A),

(b) B is a locally finite total algebra.

(c) For each k ∈ K, b1, . . . , bκ(k) ∈ B and 1 ≤ i ≤ κ(k), kB(b1, . . . , bκ(k)) 6= bi.

A particular case of the above results for unary algebras (and for directed
graphs) is proved in [11]. [11] contains also examples which show the necessity
of the conditions that a unary algebra be total, locally finite and of finite type.
Recall also that weakly–local finiteness and local finiteness are equivalent for unary
algebras.

Finally note that the condition (∗ ∗ ∗) of Theorem 3.6 is used in the proof (see
e.g., Lemma 3.1). We do not know, however, whether it is indeed necessary.
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