• Title/Summary/Keyword: lateral dynamic behavior

Search Result 198, Processing Time 0.027 seconds

A study on behavior of lateral-vibration about Railway truss bridge (철도트러스 교량의 횡진동 특성에 관한 연구)

  • Yoo Seoung-Hun;Cho Sun-Kyu;Oh Ji-Taek
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.916-921
    • /
    • 2004
  • At present, the highest operation speed of general domestic train is in the level of 140km/h and it is being improved to reach at the level of 200km/h in 2011. The improved environment of train operation speed which inevitably occurs owing to the operation of KTX on the existing line badly requires technology development such as testing and evaluating technology of factors hindering high speed of railway infrastructure including railway bridge, technology to ensure operation safety and technology to evaluate structure stability. Comparing dynamic numerical interpretation for railway truss bridge and load of design standard by using dynamic response measurement and analysis for the railway truss bridge currently in use, this study established the improvement program to ensure the lateral dynamic safety of truss bridge with the increased speed of train.

  • PDF

Evaluating the accuracy of a new nonlinear reinforced concrete beam-column element comprising joint flexibility

  • Izadpanah, Mehdi;Habibi, AliReza
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.525-535
    • /
    • 2018
  • This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility model with different number of elements for each member and fiber based distributed plasticity model with different number of integration points are simulated. Comparing the results of the proposed methodology with those of the aforementioned models describes that suggested model that only uses one element for each member can appropriately estimate the nonlinear behavior of reinforced concrete structures.

A study on the development of wheel-rail contact module using general contact mechanism (일반적인 접촉특성을 이용한 휠/레일 접촉모듈 프로그램 개발에 관한 연구)

  • 박찬경;배대성;조희재;조영걸
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.204-209
    • /
    • 2003
  • The railway vehicle is composed of many suspension components, such as 1st springs, 2nd dampers, that have an influence on the dynamic characteristics of high speed train. Also, the wheel/rail shapes and its contact mechanism affect the dynamic behavior of high speed train. but these geometric contact characteristics are nonlinear functions of the wheelset lateral displacement and it do not exact dynamic analysis for high speed train. there is a need to develop a new wheel/rail contact module for dynamic behavior and wheelset model is divided motor box, wheel box and wheel body. This wheel is moved by motor box and constrained by joint. It is almost same a train and its result is more exactly.

  • PDF

Dynamic Behavior of Rotating Cantilever Beam with Crack (크랙을 가진 회전 외팔보의 동특성 해석)

  • Yoon, Han-Ik;Son, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.620-628
    • /
    • 2005
  • In this paper, we studied about the dynamic behavior of a cracked rotating cantilever beam. The influences of a rotating angular velocity, the crack depth and the crack position on the dynamic behavior of a cracked cantilever beam have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cracked cantilever beam is modeled by the Euler-Bernoulli beam theory. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The lateral tip-displacement and the axial tip-deflection of a rotating cantilever beam is more sensitive to the rotating angular velocity than the depth and position of crack. Totally, as the crack depth is increased, the natural frequency of a rotating cantilever beam is decreased in the first and second mode of vibration. When the crack depth is constant, the natural frequencies of a rotating cantilever beam are proportional to the rotating angular velocity in the each direction.

Evaluation of Particle Size Effect on Dynamic Behavior of Soil-pile System (모래 지반의 입자크기가 지반-말뚝 시스템의 동적 거동에 미치는 영향 평가)

  • Yoo, Min-Taek;Yang, Eui-Kyu;Han, Jin-Tae;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.188-197
    • /
    • 2010
  • This paper presents experimental results of a series of 1-g shaking table model tests performed on end-bearing single piles and pile groups to investigate the effect of particle size on the dynamic behavior of soil-pile systems. Two soil-pile models consisting of a single-pile and a $4{\times}2$-pile group were tested twice; first using Jumoonjin sand, and second using Australian Fine sand, which has a smaller particle size. In the case of single-pile models, the lateral displacement was almost within 1% of pile diameter which corresponds to the elastic range of the pile. The back-calculated p-y curves show that the subgrade reaction of the Jumoonjin-sand-model ground was larger than that of the Australian Fine-sand-model ground at the same displacement. This phenomenon means that the stress-strain behavior of Jumoonjin sand was initially stiffer than that of Australian Fine sand. This difference was also confirmed by resonant column tests and compression triaxial tests. And the single pile p-y backbone curves of the Australian fine sand were constructed and compared with those of the Jumoonjin sand. As a result, the stiffness of the p-y backbone curves of Jumunjin sand was larger than those of Australian fine sand. Therefore, using the same p-y curves regardless of particle size can lead to inaccurate results when evaluating dynamic behavior of soil-pile system. In the case of the group-pile models, the lateral displacement was much larger than the elastic range of pile movement at the same test conditions in the single-pile models. The back-calculated p-y curves in the case of group pile models were very similar in both sands because the stiffness difference between the Jumoonjin-sand-model ground and the Australian Fine-sand-model ground was not significantly large at a large strain level, where both sands showed non-linear behavior. According to a series of single pile and group pile test results, the evaluation group pile effect using the p-multiplier can lead to inaccurate results on dynamic behavior of soil-pile system.

  • PDF

Dynamic Response and Reinforcement of the Railway Plate Girder Bridges (무도상 철도판형교의 동적응답특성 및 보강방안)

  • Hwang, Won Sup;Cho, Eun Sang;Oh, Ji Taek;Kim, Hyun Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.281-290
    • /
    • 2007
  • In this paper, the dynamic behavior of a 12m plate girder railway bridge is analyzed using the commercial FEM program. A time history load is applied to a standard train load via the shape function ofthe beam element. In addition, lateral behavior characteristics were simulated using the Klingel sine movement. A feasibility study of the FEM program and an analysis were performed by comparing the displacement and the acceleration, from the experimental data and the results of the FEM analysis. the time history of the lateral and vertical displacements are reflected in the experimental results. Six kinds of reinforcements were studied from the effects of the displacement and the acceleration. The RF-1 model that was applied to the upper lateral bracing system, and the RF-3 model that reinforced the plate, turned out to be the most effective reinforcement methods with respect to weight limits and construction simplification.

Dynamic behavior of SRC columns with built-in cross-shaped steels subjected to lateral impact

  • Liu, Yanhua;Zeng, Lei;Liu, Changjun;Mo, Jinxu;Chen, Buqing
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.465-477
    • /
    • 2020
  • This paper presents an investigation on the dynamic behavior of SRC columns with built-in cross-shaped steels under impact load. Seven 1/2 scaled SRC specimens were subjected to low-speed impact by a gravity drop hammer test system. Three main parameters, including the lateral impact height, the axial compression ratios and the stirrup spacing, were considered in the response analysis of the specimens. The failure mode, deformation, the absorbed energy of columns, as well as impact loads are discussed. The results are mainly characterized by bending-shear failure, meanwhile specimens can maintain an acceptable integrity. More than 33% of the input impact energy is dissipated, which demonstrates its excellent impact resistance. As the impact height increases, the flexural cracks and shear cracks observed on the surface of specimens were denser and wider. The recorded time-history of impact force and mid-span displacement confirmed the three stages of relative movement between the hammer and the column. Additionally, the displacements had a notable delay compared to the rapid changes observed in the measured impact load. The deflection of the mid-span did not exceed 5.90mm while the impact load reached peak value. The impact resistance of the specimen can be improved by proper design for stirrup ratios and increasing the axial load. However, the cracking and spalling of the concrete cover at the impact point was obvious with the increasing in stiffness.

Analysis of Load Simulating System Considering Lateral Behavior of a Vehicle (횡방향 거동 특성을 고려한 부하모사 시스템 해석)

  • Kim, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.621-626
    • /
    • 2019
  • The driver's steering wheel maneuver is a typical disturbance that causes excessive body motion and traveling instability of a vehicle. Abrupt and extreme operation can cause rollover depending on the geometric and dynamic characteristics, e.g., SUV vehicles. In this study, to cope with the performance limitation of conventional cars, fundamental research on the structurization of a control system was performed as follows. Mathematical modeling of the lateral behavior induced by driver input was carried out. A controller was designed to reduce the body motion based on this model. An algorithm was applied to secure robust control performance against modeling errors due to parameter uncertainty, $H_{\infty}$. Using the decoupled 1/4 car, a dynamic load simulating model considering the body moment was suggested. The simulation result showed the validity of the load-simulating model. The framework for a lateral behavior control system is proposed, including an experimental 1/4 vehicle unit, load simulating module, suspension control module, and hardware-in-the-loop simulation technology.

STRUCTURAL INTEGRITY EVALUATION OF NUCLEAR FUEL WITH REDUCED WELDING CONDITIONS

  • Park, Nam-Gyu;Park, Joon-Kyoo;Suh, Jung-Min;Kim, Kyu-Tae;Jeon, Kyeong-Lak
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.347-354
    • /
    • 2009
  • Welding is required for a connection between two different components in the nuclear fuel of a pressurized water reactor. This work relies on a mechanical experiment and analytic results to investigate the structural integrity of nuclear fuel in a situation where some components are not welded to each other. A series of lateral vibration tests are performed in a test facility, and the test structures are examined in terms of dynamic behavior. In the tests, the displacement signal at every grid structure that sustains fuel rods is measured and processed to identify the dynamic properties. The fluid-elastic stability of the structure is also analyzed to evaluate susceptibility to a cross flow with an assumed conservative cross flow distribution. The test and analysis results confirm that the structural integrity can be maintained even in the absence of some welding connections.

A Study on Dynamic Characteristics of the 200km1h Chinese First Class Passenger Car (최고속도 200km/h급 중국 1등 객차의 동특성 해석연구)

  • 이강운
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.321-328
    • /
    • 1998
  • In this study we have studied running stability, safety and passenger comfort of the Chinese first class passenger car made by our company and CCRW. A fine analysis model of 72 d.o.f. was constructed for simulating dynamic behavior of the car on straight and curved tracks having irregularity configurations. We have calculated the various characteristic values such as critical speed, lateral force, derailment ratio, wheel unloading ratio and passenger comfort index, then evaluated them by comparing with reference values.

  • PDF