• Title/Summary/Keyword: lactic acid-producing bacteria

Search Result 228, Processing Time 0.027 seconds

Effects of wild or mutated inoculants on rye silage and its rumen fermentation indices

  • Paradhipta, Dimas Hand Vidya;Joo, Young Ho;Lee, Hyuk Jun;Lee, Seong Shin;Kwak, Youn Sig;Han, Ouk Kyu;Kim, Dong Hyeon;Kim, Sam Churl
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.949-956
    • /
    • 2020
  • Objective: This study was conducted to confirm the effects of new inoculants producing-antifungal or esterase substances on rye silage and its rumen fermentation indices by comparing wild with mutated types. Methods: Rye harvested at dough stage was ensiled into 3 L mini bucket silo (1 kg) for 90 d in triplicate following: distilled water at 20 μL/g (CON); Lactobacillus brevis 100D8 (AT) and its inactivation of antifungal genes (AT-m) at 1.2×105 cfu/g, respectively; and Leuconostoc holzapfelii 5H4 (FD) and its inactivation of esterase genes (FD-est) at 1.0×105 cfu/g, respectively. After silo opened, silage was sub-sampled for the analysis of ensiling quality and its rumen fermentation indices. Results: Among the wild type inoculants (CON vs AT vs FD), FD inoculant had higher (p<0.05) in vitro digestibilities of dry matter and neutral detergent fiber, the total degradable fraction, and total volatile fatty acid in rumen, while AT inoculant had higher (p<0.05) lactate, acetate, and lactic acid bacteria in silage. Silage pH and the potentially degradable fraction in rumen increased (p<0.05) by inactivation of antifungal activity (AT vs AT-m), but lactate, acetate, and lactic acid bacteria of silage decreased (p<0.05). In silage, acetate increased (p<0.05) by inactivation of esterase activity (FD vs FD-est) with decreases (p<0.05) of pH, ammonia-N, lactate, and yeast. Moreover, inactivation of esterase activity clearly decreased (p<0.05) in vitro digestibilities of dry matter and neutral detergent fiber, the total degradable fraction, and total volatile fatty acid in the rumen. Conclusion: This study concluded that FD inoculant confirmed esterase activity on rye silage harvested at dough stage, while AT inoculant could not be confirmed with antifungal activity due to the absence of mold in all silages.

Preparation of Low Salt Doenjang Using by Nisin-Producing Lactic Acid Bacteria (Nisin생성 유산균을 이용한 저염 된장의 제조)

  • 이정옥;류충호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.1
    • /
    • pp.75-80
    • /
    • 2002
  • The growth inhibition by nisin-Producing lactococci against Bacillus subtilis and its application to doenjang fermentation were investigated. Lactococcus lactis subsp. lactis IFO 12007, L. lactis subsp. lactis ATCC 7962 and L. lactis subsp. lactis ATCC 11454 were used as nisin-producing lactococci. All of three strain rapidly proliferated to more than 10$^{9}$ CFU/g in steamed soybeans. Only L. lactis subsp. lactis IFO 12007 was in steamed soybean without any pH decrease. In spite of the mild decrease in pH, the growth of B. subtilis was completely inhibited; no living cells were detected in a soybean sample inoculated with 10$^{6}$ CFU/g and incubated for 24 to 72h. The L. lactis subsp. lactis IFO 12007 was applied to doenjang fermentation as a starter culture. It produced high nisin activity in steamed soybean, resulting in the complete growth inhibition of B. subtilis, which had been inoculated at the beginning of the meju fermentation, throughout the process of doenjang production. Over-acidification, which is undesirable for doenjang quality, was successfully prevented simply by adding salt which killed the salt-intolerant L. lactis subsp. lactis IFO 12007. Furthermore, the nisin activity in doenjang disappeared with aging.

Fermented Property and Antioxidative Effect of GABA Producing Lactobacillus plantarum from Kimchi (김치 유래 GABA 생성 Lactobacillus plantarum의 발효 및 항상화 특성)

  • Lee, Young-Duck
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.5
    • /
    • pp.440-446
    • /
    • 2021
  • GABA (γ-aminobutyric acid) has various beneficial effects on human health such as anti-hypertension, diuretic, tranquilizer, sleep induction and anti-stress functions. In this study, the properties and the antioxidizing effects of a fermented solution was investigated by applying GABA producing lactic acid bacteria (LAB) from kimchi to corn silk extract. Lactobacillus plantarum LAB459 was identified by physiological properties, carbohydrate fermentation pattern and 16s rRNA sequence analysis. Also, the GABA production ability of the separated L. plantarum LAB459 was confirmed through TLC and HPLC analysis. Moreover, from the fermentation of corn silk extract with skim milk, it was revealed that approximately 1 ㎍/mg of GABA produced by lyophilized ferments was yielded. Lastly, the flavonoid content and DPPH radical scavenging activity were found to be high in the lyophilized ferments than in the aqueous extracts. Therefore, L. plantarum LAB459 is considered to be used as a starter culture for various fermented foods or in food and medicinal materials.

Characterization of the Strong Proteolytic Bacteria Isolated from Low Salt Fermented Anchovy and of Protease Produced by that Strain (저식염멸치젓에서 분리한 단백질분해력이 강한 세균 및 생산된 단백분해효소의 특성)

  • CHA Yong-Jun;LEE Eung-Ho;LEE Kang-Hee;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.2
    • /
    • pp.71-79
    • /
    • 1988
  • For the purpose of producing low salt fermented anchovy by accelerated method with a strong proteolytic bacteria, in this study, a strong proteolytic bacterium was isolated from low salt fermented anchovy and its bacteriological characteristics and properties of protease were experimented. The results obtained were as fellows : three proteolytic bacteria, Aeromonas anaerogenes Barillus subtilis and Staphylococcus saprophyticus were isolated from low salt fermented anchovy($4\%\;of\;salt,\;4\%\;of\;KCl,\;0.5\%\;of\;lactic\;acid,\;6\%$of sorbitol and $4\%$ of alcohol extract of red pepper) after 40 days fermentation. Among these strains, which grow best at $30^{\circ}C$, pH 7.0, B. subtilis was found the best proteolytic strain and benefit for industrial use as shown $0.95\;hr^{-1}$ of specific growth rate, $89{\mu}g-Tyr/hr.ml$ of maximum activity after 12 hrs culture in TPY broth. The protease produced by by B. subtilis showed maximum activity at $35^{\circ}C$, pH 7.0, and molecular weight was estimated to be 23,000 by Sephadex G-100 filtration, and it was supposed to be a kind of metal chelator sensitive neutral protease from the results of strong sensitivity against EDTA, o-phenanthroline and metal ions such as $Cu^{2+},\;Ni^{2+},\;Fe^{2+}.Km$ value of that by method of Lineweaver-Burk was determinded to be $0.73\%$ for casein as a substrate.

  • PDF

Direct-fed Microbials for Ruminant Animals

  • Seo, Ja-Kyeom;Kim, Seon-Woo;Kim, Myung-Hoo;Upadhaya, Santi D.;Kam, Dong-Keun;Ha, Jong-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1657-1667
    • /
    • 2010
  • Direct-fed microbials (DFM) are dietary supplements that inhibit gastrointestinal infection and provide optimally regulated microbial environments in the digestive tract. As the use of antibiotics in ruminant feeds has been banned, DFM have been emphasized as antimicrobial replacements. Microorganisms that are used in DFM for ruminants may be classified as lactic acid producing bacteria (LAB), lactic acid utilizing bacteria (LUB), or other microorganisms including species of Lactobacillus, Bifidobacterium, Enterococcus, Streptococcus, Bacillus and Propionibacterium, strains of Megasphaera elsdenii and Prevotella bryantii and yeast products containing Saccharomyces and Aspergillus. LAB may have beneficial effects in the intestinal tract and rumen. Both LAB and LUB potentially moderate rumen conditions and improve feed efficiency. Yeast DFM may reduce harmful oxygen, prevent excess lactate production, increase feed digestibility, and improve fermentation in the rumen. DFM may also compete with and inhibit the growth of pathogens, stimulate immune function, and modulate microbial balance in the gastrointestinal tract. LAB may regulate the incidence of diarrhea, and improve weight gain and feed efficiency. LUB improved weight gain in calves. DFM has been reported to improve dry matter intake, milk yield, fat corrected milk yield and milk fat content in mature animals. However, contradictory reports about the effects of DFM, dosages, feeding times and frequencies, strains of DFM, and effects on different animal conditions are available. Cultivation and preparation of ready-to-use strict anaerobes as DFM may be cost-prohibitive, and dosing methods, such as drenching, that are required for anaerobic DFM are unlikely to be acceptable as general on-farm practice. Aero-tolerant rumen microorganisms are limited to only few species, although the potential isolation and utilization of aero-tolerant ruminal strains as DFM has been reported. Spore forming bacteria are characterized by convenience of preparation and effectiveness of DFM delivery to target organs and therefore have been proposed as DFM strains. Recent studies have supported the positive effects of DFM on ruminant performance.

Characterization of Bacteriocin, lacticin YH-10, Produced by Lactococcus lactis subsp. lactis YH-10 Isolated from Kimchi (김치유산균인 Lactococcus lactis subsp. lactis YH-10가 생산하는 박테리오신의 특성)

  • Park, Eun-Min;Kim, Young-Hwa;Park, So-Jin;Kim, Yun-Im;Ha, Yu-Mi;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.683-688
    • /
    • 2004
  • A bacteriocin-producing lactic acid bacteria was isolated from Kimchi on MRS selective media with the use of Lactobacillus delbrueckii subsp. delbrueckii as an indicator strain. The strain YH-10 was identified as Lactococcus lactis subsp. lactis through the API test. The crude bacteriocin (freeze-dried 50% ammonium sulfate precipitate of culture supernatant) produced by the strain was named as lacticin YH-10. Lacticin YH-10 showed the growth inhibitory activity against Gram positive pathogenic bacteria and other lactic acid bacteria. The bacteriocin was inactivated by proteases such as protamex and aroase AP-10 and partially inactivated by amylase, proteinase K, trypsin, and papain. The lacticin YH-10 remained its activity with the treatment of heat at 10$0^{\circ}C$ for 60 min or the changes of pH 2 to 11. However, the activity was lost at high pH combined with the exposure to 10$0^{\circ}C$. The bacteriocin production of the strain was started in the exponential phase and stopped in the stationary phase. The approximate molecular mass of the bacteriocin produced by the strain was approximate 14 kDa in the analysis on SDS-PAGE.

Fermentation Characteristics of Soybean Yogurt by Mixed Culture of Bacillus sp. and Lactic Acid Bacteria (고초균과 유산균의 혼합배양에 의한 두유 요구르트의 발효 특성)

  • Yang, Ming;Kwak, Jung Soon;Jang, Seri;Jia, Yuan;Park, Inshik
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.2
    • /
    • pp.273-279
    • /
    • 2013
  • The microorganisms producing high protease activity and acid producing ability were isolated from Chunggukjang and kimchi, which were identified as Bacillus subtilis and Lactobacillus planetarum by morphological, biochemical and nutrient requirement. The attempt was made to produce soybean milk yoghurt by using the isolated microorganisms. The mixed culture of Bacillus subtilis and Lactobacillus plantarum exhibited the lowest pH value of 4.23 and highest titratable acidity of 0.88% compared to those of single cultures at $37^{\circ}C$ for 32 hrs, and their total viable count was $4.09{\times}10^8$ $cfu/m{\ell}$. The ${\alpha}$-amylase activity was the highest in culture of Bacillus subtilis after incubation for 24 hrs, while protease activity was most produced in mixed culture of Bacillus subtilis and Lactobacillus plantarum. The amounts of reducing sugars were steadily decreased as soy milk fermentation progressed.

Effects of Kimchi Lactic Acid Bacteria Lactobacillus sp. OPK2-59 with High GABA Producing Capacity on Liver Function Improvement (GABA 생성능 우수 김치 젖산균 Lactobacillus sp. OPK2-59의 간 기능 개선 효과)

  • Bae, Mi-Ok;Kim, Hye-Jin;Cha, Youn-Soo;Lee, Myung-Ki;Oh, Suk-Heung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.11
    • /
    • pp.1499-1505
    • /
    • 2009
  • This study investigated the effect of improved liver function in rats administered with ethanol by kimchi lactic acid bacteria with high GABA producing capacity. Sprague-Dawley male rats were divided into four groups; normal diet control (NC), ethanol control (EC), ethanol+Lactobacillus sp. OPK2-59 normal powder (EL1), ethanol+Lactobacillus sp. OPK2-59 GABA powder (EL2) and fed for 6 weeks. Analysis showed that there were no significant differences in body weight and feed consumption among the groups during the experimental period. Also, there were no significant differences in organ weight among the groups. The test results showed total cholesterol and triglyceride in the blood concentration that were increased by ethanol administration were significantly lowered in EL2 group. Liver triglyceride was also significantly lowered in the EL2 group compared with the EC group. Serum GOT and GPT, and liver GOT levels were significantly lower in the EL2 group compared with the EC group. Serum ethanol concentration was lower in the EL1 and EL2 groups compared with the EC group. SOD activities in liver were significantly increased in the EL1 and EL2 groups compared with the EC group. These results suggest that Lactobacillus sp. OPK2-59 GABA powder improves lipid and enzyme profiles of rats administered with ethanol.

Selection and Physico-Chemical Characteristics of Lactic Acid Bacteria which had Cholesterol Lowering Activities (콜레스테롤 저하 유산균의 분리 및 이들 균주의 이화학적 특성)

  • Oh, Min-Keun;Rhee, Yong-Hwan;Choi, Ki-Chun;Lee, Yong-Kyu;Shin, Seung-Yee;Kim, Jong-Hyun
    • Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.83-90
    • /
    • 1999
  • Four strains of lactic acid bacteria which had cholesterol lowering activities were selected from foreign fermented milk. The strains were identified as Lactobacillus(L.) rhamnosus 2084, L. casei 0781, Lactococcus (Lacto.) lactis spp. 204, and Enterococcus(E.) faecium 402. We observed that the L. rhamnosus 2084 was the most tolerant against pH 1.5, L. casei 0781 against pH 2.0, but not significantly different in the tolerance against pH 3.0. The L. rhamnosus 2084 was the most tolerant against bile acid and prominent in the degree of lowering cholesterol level. All four strains were used as starters in producing yogurt, and then investigated physico-chemical characteristics, such as pH, titratable acidity, and viable cell counts of yogurt base. L. casei 0781, L. rhamnosus 2084, Lacto. lactis 204, and E. faecium 402 were incubated for 6 hours at $40^{\circ}C$, 4 hours at $40^{\circ}C$, 6 hours at $37^{\circ}C$, and 12 hours at $37^{\circ}C$ and $40^{\circ}C$, respectively, for the optimum conditions of fermented milk.

  • PDF

Antifungal Effect of Phenyllactic Acid Produced by Lactobacillus casei Isolated from Button Mushroom

  • Yoo, Jeoung Ah;Lee, Chan-Jung;Kim, Yong-Gyun;Lee, Byung-Eui;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.14 no.4
    • /
    • pp.162-167
    • /
    • 2016
  • Lactic acid bacteria (LAB) producing phenyllactic acid (PLA), which is known as antimicrobial compound, was isolated from button mushroom bed and the isolated LAB was identified to Lactobacillus casei by 16 rRNA gene sequence analysis. Cell-free supernatant (CFS) from L. casei was assessed for both the capability to produce the antimicrobial compound PLA and the antifungal activity against three fungal pathogens (Rhizoctonia solani, Botrytis cinerea, and Collectotricum aculatum). PLA concentration was investigated to be 3.23 mM in CFS when L. casei was grown in MRS broth containing 5 mM phenylpyruvic acid as precursor for 16 h. Antifungal activity demonstrated that all fungal pathogens were sensitive to 5% CFS (v/v) of L. casei with average growth inhibitions ranging from 34.58% to 65.15% (p < 0.005), in which R. solani was the most sensitive to 65.15% and followed by C. aculatum, and B. cinerea. The minimum inhibitory concentration (MIC) for commercial PLA was also investigated to show the same trend in the range of 0.35 mg mL-1 (2.11 mM) to 0.7 mg mL-1 (4.21 mM) at pH 4.0. The inhibition ability of CFS against the pathogens were not affected by the heating or protease treatment. However, pH modification in CFS to 6.5 resulted in an extreme reduction in their antifungal activity. These results may indicate that antifungal activities in CFS was caused by acidic compounds like PLA or organic acids rather than protein or peptide molecules.