Browse > Article
http://dx.doi.org/10.5713/ajas.2010.r.08

Direct-fed Microbials for Ruminant Animals  

Seo, Ja-Kyeom (Department of Agriculture Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University)
Kim, Seon-Woo (Department of Animal and Avian Sciences, University of Maryland)
Kim, Myung-Hoo (Department of Agriculture Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University)
Upadhaya, Santi D. (Department of Agriculture Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University)
Kam, Dong-Keun (CJFeed/Animal Research Institute)
Ha, Jong-K. (Department of Agriculture Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Science, Seoul National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.23, no.12, 2010 , pp. 1657-1667 More about this Journal
Abstract
Direct-fed microbials (DFM) are dietary supplements that inhibit gastrointestinal infection and provide optimally regulated microbial environments in the digestive tract. As the use of antibiotics in ruminant feeds has been banned, DFM have been emphasized as antimicrobial replacements. Microorganisms that are used in DFM for ruminants may be classified as lactic acid producing bacteria (LAB), lactic acid utilizing bacteria (LUB), or other microorganisms including species of Lactobacillus, Bifidobacterium, Enterococcus, Streptococcus, Bacillus and Propionibacterium, strains of Megasphaera elsdenii and Prevotella bryantii and yeast products containing Saccharomyces and Aspergillus. LAB may have beneficial effects in the intestinal tract and rumen. Both LAB and LUB potentially moderate rumen conditions and improve feed efficiency. Yeast DFM may reduce harmful oxygen, prevent excess lactate production, increase feed digestibility, and improve fermentation in the rumen. DFM may also compete with and inhibit the growth of pathogens, stimulate immune function, and modulate microbial balance in the gastrointestinal tract. LAB may regulate the incidence of diarrhea, and improve weight gain and feed efficiency. LUB improved weight gain in calves. DFM has been reported to improve dry matter intake, milk yield, fat corrected milk yield and milk fat content in mature animals. However, contradictory reports about the effects of DFM, dosages, feeding times and frequencies, strains of DFM, and effects on different animal conditions are available. Cultivation and preparation of ready-to-use strict anaerobes as DFM may be cost-prohibitive, and dosing methods, such as drenching, that are required for anaerobic DFM are unlikely to be acceptable as general on-farm practice. Aero-tolerant rumen microorganisms are limited to only few species, although the potential isolation and utilization of aero-tolerant ruminal strains as DFM has been reported. Spore forming bacteria are characterized by convenience of preparation and effectiveness of DFM delivery to target organs and therefore have been proposed as DFM strains. Recent studies have supported the positive effects of DFM on ruminant performance.
Keywords
DFM; Probiotics; Mode of Action; Ruminants;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Nocek, J. E., W. P. Kautz, J. A. Z. Leedle and J. G. Allman. 2002. Ruminal supplementation of direct-fed microbials on diurnal ph variation and in situ digestion in dairy cattle. J. Dairy Sci. 85:429-433.   DOI   ScienceOn
2 Keyser, S. A., J. P. McMeniman, D. R. Smith, J. C. MacDonald and M. L. Galyean. 2007. Effects of saccharomyces cerevisiae subspecies boulardii cncm i-1079 on feed intake by healthy beef cattle treated with florfenicol and on health and performance of newly received beef heifers. J. Anim. Sci. 85:1264-1273.   DOI   ScienceOn
3 Kim, S. W. 2006. Development of a direct-fed microbial for beef cattle. PhD Dissertation. Mich. Stat. Univ. East Lansing, MI.
4 Kowalski, Z. M., P. Gorka, A. Schlagheck, W. Jagusiak, P. Micek and J. Strzetelski. 2009. Performance of holstein calves fed milk-replacer and starter mixture supplemented with probiotic feed additive. J. Anim. Feed Sci. 18:399-411.
5 Krehbiel, C. R., S. R. Rust, G. Zhang and S. E. Gilliland. 2003. Bacterial direct-fed microbials in ruminant diets: Performance response and mode of action. J. Anim. Sci. 81:E120-132.
6 Kritas, S. K., A. Govaris, G. Christodoulopoulos and A. R. Burriel. 2006. Effect of Bacillus licheniformis and Bacillus subtilis supplementation of ewe's feed on sheep milk production and young lamb mortality. J. Vet. Med. Series A. 53:170-173.   DOI   ScienceOn
7 Kung, L., Jr. and A. O. Hession. 1995. Preventing in vitro lactic acid accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii. J. Anim. Sci. 73:250-256.
8 Kung Jr, L. 2001. Direct-fed microbials for dairy cows and enzymes for lactating dairy cows: New theories and applications. In: 2001 Pennsylvania State Dairy Cattle Nutrition Workshop, Grantville, PA. pp. 86-102.
9 Lee, Y. K., K. Y. Puong, A. C. Ouwehand and S. Salminen. 2003. Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli. J. Med. Microbiol. 52:925-930.   DOI   ScienceOn
10 Gilliland, S. E. 1989. Acidophilus milk products: a review of potential benefits to consumers. J. Dairy Sci. 72:2483-2494.   DOI
11 Gregg, K., B. Hamdorf, K. Henderson, J. Kopecny and C. Wong. 1998. Genetically modified ruminal bacteria protect sheep from fluoroacetic acid poisoning. Appl. Environ. Microbiol. 64:3496-3498.
12 Grummer, R. R. 1995. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J. Anim. Sci. 73:2820-2833.
13 Holzapfel, W. H., R. Geisen and U. Schillinger. 1995. Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int. J. Food Microbiol. 24:343-362.   DOI   ScienceOn
14 Hong, H. A., L. H. Duc and S. M. Cutting. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29:813-835.   DOI   ScienceOn
15 Hyronimus, B., C. Le Marrec, A. Hadj Sassi and A. Deschamps. 2000. Acid and bile tolerance of spore-forming lactic acid bacteria. Int. J. Food Microbiol. 61:193-197.   DOI   ScienceOn
16 Jones, R. J. and R. G. Megaritty. 1986. Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of Leucaena. Aust. Vet. J. 63:259-262.   DOI
17 Jones, G. W. and J. M. Rutter. 1972. Role of K88 antigen in the pathogenesis of neonatal diarrhoea caused by Escherichia coli in piglets. Infect. Immun. 6:918-927.
18 Elam, N. A., J. F. Gleghorm, J. D. Rivera, M. L. Galyean, P. J. Defoor, M. M. Brashears and S. M. Younts-Dahl. 2003. Effects of live cultures of lactobacillus acidophilus (strains np45 and np51) and propionibacterium freudenreichii on performance, carcass, and intestinal characteristics, and escherichia coli strain o157 shedding of finishing beef steers. J. Anim. Sci. 81:2686-2698.
19 Jouany, J. P., F. Mathieu, J. Senaud, J. Bohatier, G. Bertin and M. Mercier. 1999. Influence of protozoa and fungal additives on ruminal pH and redox potential. S. Afr. J. Anim. Sci. 29:65-66.
20 Dobrogosz, W. J., I. A. Casas, G. A. Pagano, T. L. Talarico, B. M.Sjoberg and M. Karlsson. 1989. Lactobacillus reuteri and the enteric microbiota. In: The Regulatory and protective role of the normal microflora (Ed. E. Norin). pp. 283-292. Stockton Press. New York.
21 Forestier, C., C. De Champs, C. Vatoux and B. Joly. 2001. Probiotic activities of Lactobacillus casei rhamnosus: in vitro adherence to intestinal cells and antimicrobial properties. Res. Microbiol. 152:167-173.   DOI   ScienceOn
22 Frizzo, L. S., L. P. Sotto, M. V. Zbrun, E. Bertozzi, G. Sequeira, R. R. Armesto and M. R. Rosmini. 2010. Lactic acid bacteria to improve growth performance in young calves fed milk replacer and spray-dried whey powder. Anim. Feed Sci. Technol. 157:159-167.   DOI   ScienceOn
23 Fuller, R. 1989. A review: Probiotics in man and animals. J. Appl. Bacteriol. 66:365-378.   DOI
24 Galyean, M. L., G. A. Nunnery, P. J. Defoor, G. B. Salyer and C. H. Parsons. 2000. Effects of live cultures of Lactobacillus acidophilus (Strains 45 and 51) and Propionibacterium freudenreichii PF-24 on performance and carcass characteristics of finishing beef steers. Available: http://www.asft.ttu.edu/burnettcenter/progressreports/bc8.pdf. Accessed June 27, 2002.
25 Carlsson, J., Y. Iwami and T. Yamada. 1983. Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase thiocyanate-hydrogen peroxide. Inf. Immunol. 40:70-80.
26 Ghorbani, G. R., D. P. Morgavi, K. A. Beauchemin and J. A. Z. Leedle. 2002. Effects of bacterial direct-fed microbials on ruminal fermentation, blood variables, and the microbial populations of feedlot cattle. J. Anim. Sci. 80:1977-1985.
27 Axelsson, L. T., T. C. Chung, W. Dobrogosz and S. E. Lidgren. 1989. Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microb. Ecol. Health Dis. 2:131-136.   DOI
28 Beharka, A. A., T. G. Nagaraja and J. L. Morrill. 1991. Performance and ruminal function development of young calves fed diets with aspergillus oryzae fermentation extract. J. Dairy Sci. 74:4326-4336.   DOI
29 Chaucheyras, F., G. Fonty, G. Bertin, J. M. Salmon and P. Gouet. 1995. Effects of a strain of Saccharomyces cerevisiae (Levucell SC), a microbial additive for ruminants, on lactate metabolism in vitro. Can. J. Microbiol. 42:927-933.
30 Chiquette, J., M. J. Allison and M. A. Rasmussen. 2008. Prevotella bryantii 25a used as a probiotic in early-lactation dairy cows: Effect on ruminal fermentation characteristics, milk production, and milk composition. J. Dairy Sci. 91:3536-3543.   DOI   ScienceOn
31 Cotter, P. D., C. Hill and R. P. Ross. 2005. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3:777-788.   DOI   ScienceOn
32 Cruywagen, C. W., I. Jordaan and L. Venter. 1996. Effect of lactobacillus acidophilus supplementation of milk replacer on preweaning performance of calves. J. Dairy Sci. 79:483-486.   DOI   ScienceOn
33 Tamate, H., A. D. McGilliard, N. L. Jacobson and R. Getty. 1961. Effect of various dietaries on the anatomical development of the stomach in the calf. J. Dairy Sci. 45:408-420.
34 Dicks, L. M. T. and M. Botes. 2010. Probiotic lactic acid bacteria in the gastro-intestinal tract: Health benefits, safety and mode of action. Benef. Microbes 1:11-29.   DOI
35 Abe, F., N. Ishibashi and S. Shimamura. 1995. Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J. Dairy Sci. 78:2838-2846.   DOI   ScienceOn
36 Abu-Tarboush, H. M., M. Y. Al-Saiady and A. H. Keir El-Din. 1996. Evaluation of diet containing lactobacilli on performance, fecal coliform, and lactobacilli of young dairy calves. Anim. Feed Sci. Technol. 57:39-49.   DOI   ScienceOn
37 Adams, M. C., J. Luo, D. Rayward, S. King, R. Gibson and G. H. Moghaddam. 2008. Selection of a novel direct-fed microbial to enhance weight gain in intensively reared calves. Anim. Feed Sci. Technol. 145:41-52.   DOI   ScienceOn
38 Arthur, T. M., J. M. Bosilevac, N. Kalchayanand, J. E. Wells, S. D. Shackelfold, T. L. Wheeler and M. Koohmaraie. 2010. Evaluation of a direct-fed microbial product effect on the prevalence and load of escherichia coli o157:H7 in feedlot cattle. J. Food Prot. 73:366-371.
39 Stein, D. R., D. T. Allen, E. B. Perry, J. C. Bruner, K. W. Gates, T. G. Rehberger, K. Mertz, D. Jones and L. J. Spicer. 2006. Effects of feeding propionibacteria to dairy cows on milk yield, milk components, and reproduction. J. Dairy Sci. 89:111-125.   DOI   ScienceOn
40 Swinney-Floyd, D., B. A. Gardiner, F. N. Owens and T. Rehberger. 1999. Effects of inoculation with either Propionibacterium strain P-63 alone or in combination with Lactobacillus acidophilus strain LA53545 on performance of feedlot cattle. J. Anim. Sci. 77 (Suppl.):77 (Abstr.).
41 Yoon, I. K. and M. D. Stern. 1995. Influence of direct-fed microbials on ruminal microbial fermentation and performance of ruminants: A review. Asian-Aust. J. Anim. Sci. 8:533-555.   DOI   ScienceOn
42 Wehnes, C., K. Novak, V. Patskevich, D. Shields, J. Coalson, A. Smith, M. Davis and T. Rehberger. 2009. Benefits of supplementation of an electrolyte scour treatment with a bacillus-based direct-fed microbial for calves. Probiotics Antimicrob. Proteins 1:36-44.   DOI
43 Weiss, W. P., D. J. Wyatt and T. R. McKelvey. 2008. Effect of feeding propionibacteria on milk production by early lactation dairy cows. J. Dairy Sci. 91:646-652.   DOI   ScienceOn
44 Rose, A. H. 1987. Responses to the chemical environment. In: The Yeasts (Ed. A. H. Rose and J. S. Harrisson) Vol. 2, Academic Press, London (1987), pp. 5-40.
45 Ripamonti, B., A. Agazzi, A. Baldi, C. Balzaretti, C. Bersani, S. Pirani, R. Rebucci, G. Savoini, S. Stella, A. Stenico and C. Domeneghini. 2009. Administration of Bacillus coagulans in calves: Recovery from faecal samples and evaluation of functional aspects of spores. Vet. Res. Commun. 33:991-1001.   DOI
46 Robinson, J. A., W. J. Smolenski, R. C. Greening, M. L. Ogilvie, R. L. Bell, K. Barsuhn and J. P. Peters. 1992. Prevention of acute acidosis and enhancement of feed intake in the bovine by Megasphaera elsdenii 407A. J. Anim. Sci. 70 (Suppl. 1):310 (Abstr.).
47 Roger, V., G. Fonty, S. Komisarczuk-Bony and P. Gouet. 1990. Effects of physicochemical factors on the adhesion to cellulose Avicel of the ruminal bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes subsp. succinogenes. Appl. Environ. Microbiol. 56:3081-3087.
48 Roos, T. B., V. C. Tabeleão, L. A. Dümmer, E. Schwegler, M. A. Goulart, S. V. Moura, M. N. Corrêa, F. P. L. Leite and C. Gil- Turnes. 2010. Effect of Bacillus cereus var. Toyoi and Saccharomyces boulardii on the immune response of sheep to vaccines. Food Agric. Immunol. 21:113-118.   DOI   ScienceOn
49 Sanders, M. E., L. Morelli and T. A. Tompkins. 2003. Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr. Rev. Food Sci. Food Saf. 2:101-110.   DOI
50 Silva, M., N. V. Jacobus, C. Deneke and S. L. Gorbach. 1987. Antimicrobial substance from a human Lactobacillus strain. Antimicrob. Agents Chemother. 31:1231-1233.   DOI   ScienceOn
51 Ohya, T., T. Marubashi and H. Ito. 2000. Significance of fecal volatile fatty acids in shedding of Escherichia coli O157 from calves: experimental infection and preliminary use of a probiotic product. J. Vet. Med. Sci. 62:1151-1155.   DOI   ScienceOn
52 Nocek, J. E., W. P. Kautz, J. A. Z. Leedle and E. Block. 2003. Direct-fed microbial supplementation on the performance of dairy cattle during the transition period. J. Dairy Sci. 86:331-335.   DOI   ScienceOn
53 Nocek, J. E. and W. P. Kautz. 2006. Direct-fed microbial supplementation on ruminal digestion, health, and performance of pre- and postpartum dairy cattle. J. Dairy Sci. 89:260-266.   DOI   ScienceOn
54 Oetzel, G. R., K. M. Emery, W. P. Kautz and J. E. Nocek. 2007. Direct-fed microbial supplementation and health and performance of pre- and postpartum dairy cattle: A field trial. J. Dairy Sci. 90:2058-2068.   DOI   ScienceOn
55 Pratt, W. C. 2001. Methods for maintaining and administering live probiotic as feed additives for animals. US Patent 5401501. Available: http://www.patentstorm. us/patents/5401501-fulltext.html. Accessed Jun. 15, 2007.
56 Qiao, G. H., A. S. Shan, N. Ma, Q. Q. Ma and Z. W. Sun. 2009. Effect of supplemental bacillus cultures on rumen fermentation and milk yield in Chinese Holstein cows. J. Anim. Physiol. Anim. Nutr. 94:429-436.
57 Raeth-Knight, M. L., J. G. Linn and H. G. Jung. 2007. Effect of direct-fed microbials on performance, diet digestibility, and rumen characteristics of holstein dairy cows. J. Dairy Sci. 90:1802-1809.   DOI   ScienceOn
58 Reynolds, C. K., P. C. Aikman, B. Lupoli, D. J. Humphries and D. E. Beever. 2003. Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. J. Dairy Sci. 86:1201-1217.   DOI   ScienceOn
59 Lynch, H. A. and S. A. Martin. 2002. Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. J. Dairy Sci. 85:2603-2608.   DOI   ScienceOn
60 Lehloenya, K. V., C. R. Krehbiel, K. J. Mertz, T. G. Rehberger and L. J. Spicer. 2008. Effects of propionibacteria and yeast culture fed to steers on nutrient intake and site and extent of digestion. J. Dairy Sci. 91:653-662.   DOI   ScienceOn
61 Malik, R. and S. Bandla. 2010. Effect of source and dose of probiotics and exogenous fibrolytic enzymes (EFE) on intake, feed efficiency, and growth of male buffalo (bubalus bubalis) calves. Trop. Anim. Health Prod. 42:1263-1269.   DOI
62 Matsuguchi, T., A. Takagi, T. Matsuzaki, M. Nagaoka, K. Ishikawa and T. Yokokura. 2003. Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor a-inducing activities in macrophage through Toll-like receptor 2. Clin. Diagn. Lab. Immunol. 10:259-266.
63 Miettinen, M., J. Vuopio-Varkila and K. Varkila. 1996. Production of human necrosis factor a, interleukin 6, and interleukin 10 is induced by lactic acid bacteria. Infect. Immun. 64:5403-5405.
64 Miyagi, T., K. Kaneichi, R. I. Aminov, Y. Kobayashi, K. Sakka, S. Hoshino and K. Ohmiya. 1995. Enumeration of transconjugated Ruminococcus albus and its survival in the goat rumen. Appl. Environ. Microbiol. 61:2030-2032.
65 Nagaraja, T. G., C. J. Newbold, C. J. Van Nevel and D. I. Demeyer. 1997. Manipulation of ruminal fermentation. pp. 523-632 in the Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Blackie Academic & Professional, London, NY.