DOI QR코드

DOI QR Code

Fermented Property and Antioxidative Effect of GABA Producing Lactobacillus plantarum from Kimchi

김치 유래 GABA 생성 Lactobacillus plantarum의 발효 및 항상화 특성

  • Lee, Young-Duck (Department of Food Science and Engineering, Seowon University)
  • Received : 2021.10.06
  • Accepted : 2021.10.26
  • Published : 2021.10.30

Abstract

GABA (γ-aminobutyric acid) has various beneficial effects on human health such as anti-hypertension, diuretic, tranquilizer, sleep induction and anti-stress functions. In this study, the properties and the antioxidizing effects of a fermented solution was investigated by applying GABA producing lactic acid bacteria (LAB) from kimchi to corn silk extract. Lactobacillus plantarum LAB459 was identified by physiological properties, carbohydrate fermentation pattern and 16s rRNA sequence analysis. Also, the GABA production ability of the separated L. plantarum LAB459 was confirmed through TLC and HPLC analysis. Moreover, from the fermentation of corn silk extract with skim milk, it was revealed that approximately 1 ㎍/mg of GABA produced by lyophilized ferments was yielded. Lastly, the flavonoid content and DPPH radical scavenging activity were found to be high in the lyophilized ferments than in the aqueous extracts. Therefore, L. plantarum LAB459 is considered to be used as a starter culture for various fermented foods or in food and medicinal materials.

GABA는 식물, 동물 및 미생물 등 자연계에 다양하게 존재하고 있으며, 항고혈압, 이뇨, 진정, 수면유도 및 항스트레스 등 다양한 효과가 있는 것으로 알려져 있어서 식품, 의약품 소재로 활용되고 있다. 본 연구에서는 김치로 부터 분리한 GABA 형성 유산균을 옥수수 수염 추출물에 적용하여 발효 특성과 발효물의 항산화 효과에 대해 분석하였다. 신규 L. plantarum LAB459의 분리와 동정은 생화학적 특성, 당자화성 및 16s rRNA 염기 서열 분석을 통해 확인되었다. 그리고 TLC와 HPLC 분석을 통해 분리된 L. plantarum LAB459가 GABA 생성능이 있는 것으로 나타났다. 그리고 탈지유가 포함된 옥수수 수염 열수 추출물에 대해 발효를 수행한 결과, 동결 건조된 발효물에 약 1 ㎍/mg 수준의 GABA가 형성된 것을 확인하였다. 또한 발효물에 대한 플라보노이드와 항산화 분석은 옥수수 수염 열수 추출물에 비해 더 높은 것으로 나타났다. 따라서 본 연구에서 분리된 L. plantarum LAB459는 다양한 식품 발효의 스타터 또는 식품 소재와 의약품 소재로 적용이 가능할 것으로 판단된다.

Keywords

References

  1. Breier, A., Albu, M., Picker, D., Zahn, T.P., Wolkowitz, O.M., Paul, S.M., Controllable and Uncontrollable Stress in Humans: Alterations in Mood and Neuroendocrine and Psycho physiological Function. Am. J. Psychiatry., 144, 1419-1425 (1987). https://doi.org/10.1176/ajp.144.11.1419
  2. Wallace, T.C., Guarner, F., Madsen, K., Cabana, M.D., Gibson, G., Hentges, E., Sanders, M.E., Human gut microbiota and its relationship to health and disease. Nutr. Rev., 69, 392-403 (2011). https://doi.org/10.1111/j.1753-4887.2011.00402.x
  3. Lee, Y.D., Properties of Aqueous Extract of Protaetia Brevitarsis Larva and Mountain Ginseng Fermented by Lactobacillus brevis. J. Food Hyg. Saf., 33, 369-374 (2018). https://doi.org/10.13103/JFHS.2018.33.5.369
  4. Soriano, J.M., Rico, H., Molto, J.C., Manes, J., Assessment of the microbiological quality and wash treatments of lettuce served in university restaurants. Int. J. Food Microbiol., 58, 123-128 (2000). https://doi.org/10.1016/S0168-1605(00)00288-9
  5. Bae, H.J., Lee, J.H., Oh, S.I., Effect of applying pretreatment methods before cooking for decreasing the microbiological hazard of cooked dried fish in foodservice establishments. Korean J. Soc. Food Cookery Sci., 19, 555-561 (2003).
  6. Kang, T.M., Cho, S.K., Park, J.H., Antibiotic resistances of Enterococcus isolated from salad and sprout. Microbiology and Biotechnology Letters, 36, 142-148 (2008).
  7. Hubert, J., Berger, M., Nepveu, F., Paul, F., Dayde, J., Effects of fermentation on the phytochemical composition and antioxidant properties of soy germ. Food Chem., 109, 709-721 (2008). https://doi.org/10.1016/j.foodchem.2007.12.081
  8. Katina, K., Liukkonen, K.H., Kaukovirta-Norja, A., Adlercreutz, H., Heinonen, S.M., Lampi, A.M., Pihlava, J.M., Poutanen, K., Fermentation-induced changes in the nutritional value of native or germinated rye. J. Cereal Sci., 46, 348-355 (2007). https://doi.org/10.1016/j.jcs.2007.07.006
  9. Leroy, F., De Vuyst, L., Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol., 15, 67-78 (2004). https://doi.org/10.1016/j.tifs.2003.09.004
  10. Jeppsson, B., Mangell, P., Thorlacius, H., Use of probiotics as prophylaxis for postoperative infections. Nutrients, 3, 604-612 (2011). https://doi.org/10.3390/nu3050604
  11. Vyas, U., Ranganathan, N., Probiotics, prebiotics, and synbiotics: gut and beyond. Gastroenterol. Res. Pract., 2012, 1-16 (2012). https://doi.org/10.1155/2012/872716
  12. Kang, K.H., Health Benefits of Lactic Acid Bacteria. Curr. Top. Lact. Acid. Bact. Probiotics, 1, 1-8 (2013) https://doi.org/10.35732/ctlabp.2013.1.1.1
  13. Sarasa, S.B., Mahendran, R., Muthusamy, G., Thankappan, B., Selta, D.R.F., Angayarkanni, A., Brief review on the non-protein amino acid, gamma-amino butyric acid (GABA): Its production and role in microbes. Curr. Microbiol., 77, 534-544 (2020). https://doi.org/10.1007/s00284-019-01839-w
  14. Podlesakova, K., Ugena, L., Spichal, L., Dolezal, K., De Diego, N., Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. N. Biotechnol., 25, 53-65 (2019).
  15. Hao, R., Schmit, J.C., Purification and Characterization of glutamate decarboxylase from Neurospora crassa conidia. J. Biol. Chem., 266, 5135-5139 (1991). https://doi.org/10.1016/S0021-9258(19)67765-3
  16. Satya Narayan, V., Nair, P.M., Metabolism, enzymology and possible roles of 4-amninobutyrate in higher plants. Phytochemistry, 29, 367-375 (1990). https://doi.org/10.1016/0031-9422(90)85081-P
  17. Mody, I., De Koninck, Y., Otis, T.S., Soltesz, I., Bringing the cleft at GABA synapses in the brain. Trends Neurosci., 17, 517-525 (1994). https://doi.org/10.1016/0166-2236(94)90155-4
  18. Oh, C.H., Oh, S.H., Effects of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J. Med. Food, 7, 19-23 (2004). https://doi.org/10.1089/109662004322984653
  19. Gokani, V.N., Thakker M.U, Patel, J.G., Ghosh, S.K., Chatterjee, S.K., Thin-layer chromatographic method for estimation of gamma-aminobutyric acid from brain. Indian J. Physiol. Pharmacol., 23, 101-104 (1979).
  20. Swain, T., Hillis, W.E., The phenolic constituents of Prunus domestica. I. The quantitative analysis of phenolic constituents. J. Sci. Food Agric., 10, 63-68 (1959). https://doi.org/10.1002/jsfa.2740100110
  21. Davis, W.B., Determination of flavanones in citrus fruits. Anal. Chem., 19, 476-478 (1947). https://doi.org/10.1021/ac60007a016
  22. Blois, M.S., Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200 (1958). https://doi.org/10.1038/1811199a0
  23. Kim, H.S., Kim, J.Y., Park, M.S., Zheng, H., Ji, G.E., Cloning and expression of β-glucuronidase from Lactobacillus brevis in E. coli and application in bioconversion of baicalin and wogonoside. J. Microbiol. Biotechnol., 19, 1650-1655 (2009). https://doi.org/10.4014/jmb.0904.04053
  24. Rekha, C.R., Vijayalakshmi, G., Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. J. Appl. Microbiol., 109, 1198-1208 (2010). https://doi.org/10.1111/j.1365-2672.2010.04745.x
  25. Jeun, J.H., Kim, H.D., Lee, H.S., Ryu, B.H., Isolation and identification of Lactobacillus sp. produced γ-aminobutyric acid (GABA) form traditional slat fermented anchovy. Korean J. Food & Nutr., 1, 72-79 (2004).
  26. Lim, S.D., Yoo, S.H., Yang, H.D., Kim, S.K., Park, S.Y., GABA productivity in yoghurt fermented by freeze dried culture preparations of Lactobacillus acidophilus RMK567. Food Sci. Anim. Resour., 29, 437-444 (2009). https://doi.org/10.5851/kosfa.2009.29.4.437
  27. Park, S.Y., Shim, H.Y., Kim, K.S., Lim, S.D., Physiological characteristics and GABA production of Lactobacillus plantarum K74 isolated from Kimchi. J. Dairy Sci. Biotechnol., 31, 143-152 (2013).
  28. Park, K.B., Oh, S.H., Isolation and characterization of Lactobacillus buchnri strains with high γ-aminobutyric acid producing capacity from naturally aged cheese. Food Sci. Biotechnol., 15, 86-90 (2006).
  29. Lee, H.J., Son, J.Y., Lee, S.J., Lee, H.S., Lee, B.J., Choi, I.S., Sohn, J.H., Production of gamma-aminobutyric acid (GABA) by Lactobacillus plantarum subsp. plantarum B-134 isolated from makgeolli, traditional Korean rice wine. J. Life Sci., 27, 567-574 (2017). https://doi.org/10.5352/JLS.2017.27.5.567
  30. Kim, S.L., Choi, B.H., Park, S.U., Moon, H.G., Functional ingredients of maize and their variation. Korean J. Crop Sci., 41, 46-68 (1996).
  31. Ku, K.M., Kim, S.K., Kang, Y.H., Antioxidant activity and functional components of corn silk (Zea mays L). Korean J. Plant Res., 22, 323-329 (2009).
  32. Cho, S.C., Kim, D.H., Park, C.S., Koh, J.H., Pyun, Y.R., Kook, MC., Production of GABA-rich tomato paste by Lactobacillus sp. fermentation. Korean J. Food & Nutr., 25, 26-31 (2012). https://doi.org/10.9799/KSFAN.2012.25.1.026
  33. Lee, H.S., Kwon, S.Y., Lee, S.O., Lee, S.P., Production of fermented omija (Schizandra chinensis) beverage fortified with high content of gamma-amino butyric acid using Lactobacillus plantarum. Korean J. Food Preserv., 23, 326-334 (2016). https://doi.org/10.11002/KJFP.2016.23.3.326
  34. Kim T.K., Shin H.D., Lee Y.H., Stabilization of polyphenolic antioxidants using inclusion complexation with cyclodextrin and their utilization as the fresh-food preservative. Korean J. Food Sci. Technol., 35, 266-271 (2003).
  35. Kwon, S.Y., Whang, K., Lee, S.P., Anti-inflammatory effects and GABA production of old antler and Auricularia auriculajudae extract fermented by Lactobacillus plantarum. Korean J. Food Preserv., 24, 274-281 (2017). https://doi.org/10.11002/KJFP.2017.24.2.274
  36. Yoo, S.J., Chin, J.E., Oh, S.H., Ryu, M.J., Hwang, K.T., Antioxidant activity in GABA lactic acid bacteria fermentation. J. Chitin and Chitosan, 24, 199-204 (2019). https://doi.org/10.17642/jcc.24.3.8