• Title/Summary/Keyword: knots and links

Search Result 18, Processing Time 0.025 seconds

DNA and the SU(3) Invariant of Knots and Links

  • Jeong, Myeong-Ju;Hong, Dae Gy
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.3
    • /
    • pp.385-395
    • /
    • 2013
  • To analyze the enzyme reaction on DNA knots and links, we study tangle embedding and the number of reaction. By using the quantum SU(3) invariant of knots and links we get a necessary condition for a tangle to be embedded in a knot or link. Moreover we give a relationship between the number of reactions and the changes of the value of quantum SU(3) invariant for the corresponding knots and links in a processive recombination.

RNA FOLDINGS AND STUCK KNOTS

  • Jose Ceniceros;Mohamed Elhamdadi;Josef Komissar;Hitakshi Lahrani
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.223-245
    • /
    • 2024
  • We study RNA foldings and investigate their topology using a combination of knot theory and embedded rigid vertex graphs. Knot theory has been helpful in modeling biomolecules, but classical knots emphasize a biomolecule's entanglement while ignoring their intrachain interactions. We remedy this by using stuck knots and links, which provide a way to emphasize both their entanglement and intrachain interactions. We first give a generating set of the oriented stuck Reidemeister moves for oriented stuck links. We then introduce an algebraic structure to axiomatize the oriented stuck Reidemeister moves. Using this algebraic structure, we define a coloring counting invariant of stuck links and provide explicit computations of the invariant. Lastly, we compute the counting invariant for arc diagrams of RNA foldings through the use of stuck link diagrams.

Finite Type Invariants and the Kauffman Bracket Polynomials of Virtual Knots

  • Jeong, Myeong-Ju;Park, Chan-Young;Yeo, Soon Tae
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.639-653
    • /
    • 2014
  • In [9], Kauffman introduced virtual knot theory and generalized many classical knot invariants to virtual ones. For example, he extended the Jones polynomials $V_K(t)$ of classical links to the f-polynomials $f_K(A)$ of virtual links by using bracket polynomials. In [4], M. Goussarov, M. Polyak and O. Viro introduced finite type invariants of virtual knots. In this paper, we give a necessary condition for a virtual knot invariant to be of finite type by using $t(a_1,{\cdots},a_m)$-sequences of virtual knots. Then we show that the higher derivatives $f_K^{(n)}(a)$ of the f-polynomial $f_K(A)$ of a virtual knot K at any point a are not of finite type unless $n{\leq}1$ and a = 1.

LEGENDRIAN RACK INVARIANTS OF LEGENDRIAN KNOTS

  • Ceniceros, Jose;Elhamdadi, Mohamed;Nelson, Sam
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.623-639
    • /
    • 2021
  • We define a new algebraic structure called Legendrian racks or racks with Legendrian structure, motivated by the front-projection Reidemeister moves for Legendrian knots. We provide examples of Legendrian racks and use these algebraic structures to define invariants of Legendrian knots with explicit computational examples. We classify Legendrian structures on racks with 3 and 4 elements. We use Legendrian racks to distinguish certain Legendrian knots which are equivalent as smooth knots.

THE BASKET NUMBERS OF KNOTS

  • Bang, Je-Jun;Do, Jun-Ho;Kim, Dongseok;Kim, Tae-Hyung;Park, Se-Han
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.115-128
    • /
    • 2015
  • Plumbing surfaces of links were introduced to study the geometry of the complement of the links. A basket surface is one of these plumbing surfaces and it can be presented by two sequential presentations, the first sequence is the flat plumbing basket code found by Furihata, Hirasawa and Kobayashi and the second sequence presents the number of the full twists for each of annuli. The minimum number of plumbings to obtain a basket surface of a knot is defined to be the basket number of the given knot. In present article, we first find a classification theorem about the basket number of knots. We use these sequential presentations and the classification theorem to find the basket number of all prime knots whose crossing number is 7 or less except two knots $7_1$ and $7_5$.

Divide Knot Presentation of Knots of Berge's Sporadic Lens Space Surgery

  • Yamada, Yuichi
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.255-277
    • /
    • 2020
  • Divide knots and links, defined by A'Campo in the singularity theory of complex curves, is a method to present knots or links by real plane curves. The present paper is a sequel of the author's previous result that every knot in the major subfamilies of Berge's lens space surgery (i.e., knots yielding a lens space by Dehn surgery) is presented by an L-shaped curve as a divide knot. In the present paper, L-shaped curves are generalized and it is shown that every knot in the minor subfamilies, called sporadic examples of Berge's lens space surgery, is presented by a generalized L-shaped curve as a divide knot. A formula on the surgery coefficients and the presentation is also considered.

ON CROSSING NUMBER OF KNOTS

  • Banerjee, S.;Basak, S.;Adhikari, M.R.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.349-356
    • /
    • 2006
  • The aim of this paper is to endow a monoid structure on the set S of all oriented knots(links) under the operation ${\biguplus}$, called addition of knots. Moreover, we prove that there exists a homomorphism of monoids between ($S_d,\;{\biguplus}$) to (N, +), where $S_d$ is a subset of S with an extra condition and N is the monoid of non negative integers under usual addition.

  • PDF

SKEW BRACE ENHANCEMENTS AND VIRTUAL LINKS

  • Melody Chang;Sam Nelson
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.247-257
    • /
    • 2024
  • We use the structure of skew braces to enhance the biquandle counting invariant for virtual knots and links for finite biquandles defined from skew braces. We introduce two new invariants: a single-variable polynomial using skew brace ideals and a two-variable polynomial using the skew brace group structures. We provide examples to show that the new invariants are not determined by the counting invariant and hence are proper enhancements.