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PARITY BRACKET POLYNOMIAL VIA SOME PARITY OF

VIRTUAL LINKS

Young Ho Im

Abstract. Manturov inroduced the parity bracket polynomial by using

a parity of virtual knots, which is an extension of Jones-Kauffman poly-

nomial. We extend Manturov’s result to virtual links, so that we obtain
the parity bracket polynomial for virtual links and give some examples.

1. Introduction

Virtual knot theory is introduced by Kauffman as a generalization of classical
knot theory so that if two classical link diagrams are equivalent as virtual links,
then they are equivalent as classical links [4]. A virtual link diagram is a link
diagram in R2 possibly with some encircled crossings without over/under infor-
mation, called virtual crossings. A virtual link is the equivalence class of such
a link diagram by generalized Reidemeister moves, which consist of (classical)
Reidemeister moves of type R1, R2 and R3 and virtual Reidemeister moves of
type V R1, V R2, V R3 and the semivirtual move V R4 as shown in Figure 1.

Figure 1. Generalized Reidemeister moves
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Manturov [5] investigated parity properties of virtual knots so that every real
crossing is declared to be even or odd according to a certain rule. In particular,
he strengthens known invariants such as the Kauffman polynomial for virtual
knots by using parities of real crossings so that he introduces the parity bracket
polynomial for virtual knots.

Im and Park [2] found a parity of virtual links with certain properties, and
defined a multi-variable polynomial invariant for virtual links. Also, Im, Park
and Shin [3, 6] obtain some polynomial invariants of virtual links by using a
parity.

In this paper we extend the Manturov’s parity bracket polynomial of virtual
knots to the case of virtual links and give some examples.

This paper is organized as follows. In Section 2, we review a parity of vir-
tual link diagrams introduced in [2] which is preserved under the generalized
Reidemeister moves. In section 3, we give main result and some examples.

2. Preliminaries

We give a brief review about a parity of virtual link diagrams introduced by
Im and Park [2] so that we can define some polynomial invariants for virtual
links by using this parity.

A real crossing of a virtual link diagram D is said to be a self crossing if
the crossing belongs to the one component of D, and we denote the set of self
crossings of D by S(D). A real crossing of D is a mixed crossing if the crossing
belongs to different components of D, and we denote the set of mixed crossings
of D by M(D). If we denote the set of real crossings of D by C(D), then we
have C(D) = S(D) tM(D).

Recall a Gauss code for a virtual knot diagram is a sequence of labels for the
crossings with each label repeated twice to indicate a walk along the diagram
from a given starting point and returning to that point. In the case of multiple
link components, we mean a sequence labels, each repeated twice and inserted
by partition symbols | to indicate the component circuits for the code.

For every real crossing of a virtual knot diagram, the Gaussian parity, which
is even or odd, is determined. The parity is also defined for crossings of free
knots. For free knots, see Manturov [5].

As a generalization of the Gaussian parity for virtual knots, a parity of a
virtual link diagram is defined so that real crossings of a virtual link diagram
can be labeled as even or odd.

Definition 1. [2] Let D = D1 ∪D2 ∪ · · · ∪Dn be a virtual link diagram of a
n-component virtual link. We define a parity of real crossings of D in order as
follows.

First, for every mixed crossing c ∈ M(D) which belongs to Di ∩Dj(i 6= j),
c is odd if the number of real crossings of Di ∩ Dj is odd. If the number of
real crossings of Di ∩ Dj is odd for i 6= j, we replace all virtual crossings of
Di ∩Dj by real crossings whose signs are chosen arbitrarily and obtain a new
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virtual link diagram D′ = D′1 ∪D′2 ∪ · · · ∪D′n (if the number of real crossings of
Di ∩Dj is even for all i 6= j, then D = D′). Then the number of real crossings
of D′i ∩D′j is even for any i 6= j.

Now consider c ∈ M(D) which belongs to Di ∩ Dj(i 6= j) and the number
of real crossings of Di ∩Dj is even. If there is a Gauss code of the virtual link
diagram D′ so that the number of labels between two appearances of d for all
real crossings d ∈M(D′) is even, then c is even. Otherwise, c is odd.

Next, for every self crossing c ∈ S(D), c is even(odd) if there is a Gauss
code of the virtual link diagram D′ so that the number of labels between two
appearances of c is even(odd), respectively.

For classical links, all crossings are even, but in virtual links real crossings
can be even or odd. Also, the parity of virtual link diagrams can be affected
under the generalized Reidemeister moves as follows.

Lemma 2.1. [2] Let D1 and D2 be equivalent virtual link diagrams. Suppose
D1 and D2 are obtained from each other by a single generalized Reidemeister
move, and the number of real crossings in D2 is less or equal to that in D1.
Then the followings hold.

(1) If D2 is obtained from D1 by a R1-move, then the real crossing of D1

involved in the R1-move is even.
(2) If D2 is obtained from D1 by a R2-move, then both real crossings involved

in the R2-move have the same parity.
(3) If D2 is obtained from D1 by a R3-move, then the three real crossings

in the diagram D1 and the corresponding three real crossings in D2 which are
involved in the R3-move have the same parity.

(4) If D2 is obtained from D1 by a V R4-move, then the corresponding real
crossings in D1 and D2 which are involved in the V R4-move have the same
parity.

(5) For each generalized Reidemeister move from D1 to D2 there is a one-
to-one correspondence between the real crossings in D1 and the crossings in
D2 which are not involved in the Reidemeister move. The corresponding real
crossings have the same parity.

Remark 1. For virtual knots, the parity given in Definition 2.1 is the same as
the Gaussian parity of virtual knots defined by Manturov [5].

From now on, we assume that all virtual links are oriented if there is no
special mention.

3. Parity polynomial invariant for virtual links

In this section we extend the parity bracket polynomial for virtual knots
introduced by Manturov [5] to the case of virtual links.

We begin with the following Lemma.

Lemma 3.1. Let D and D′ be virtual link diagrams with n components. Assume
D′ is obtained from D by applying a R3-move and at least one real crossing
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among three real crossings in a local disk for a R3-move belongs to a single
component. Then the number of even crossings of D(D′) in a local disk for a
R3-move is not equal to 2, respectively.

Figure 2. A R3-move

Proof. Let c1, c2 and c3 be real crossings between the top and the middle arcs,
the top and the bottom arcs and the middle and the bottom arcs of D in the
process of R3-move, respectively as in Figure 2. We denote the corresponding
three real crossings of D′ by c′1, c

′
2 and c′3. If c1, c2 and c3 belong to S(D), then

the number of even crossings among them is either 1 or 3.
Now we assume that c1, c2 ∈ M(D) and c3 ∈ S(D). Then c3(c′3) is in

Di(D
′
i) and c1, c2(c1, c2) are in Di∩Dj(D

′
i∩D′j) for some components of D(D′),

respectively. If the number of real crossings of Di ∩Dj(D
′
i ∩D′j) is odd, then

c1(c′1) and c2(c′2) are odd, respectively. As a result the conclusion follows. Thus
we assume the number of real crossings of Di∩Dj(D

′
i∩D′j) is even, respectively.

By Lemma 2.2, c3 and c′3 have the same parity.
If c3 is an even crossing and there is a Gauss code (· · · |c3c1 · · · c3c2 · · · |c1c2 · · · | · · · )

so that the number of labels between two appearances of d for all real crossings
d ∈M(D) is even, both c1 and c2 are even. Otherwise, both c1 and c2 are odd.
Because of the corresponding Gauss code (· · · |c′1c′3 · · · c′2c′3 · · · |c′2c′1 · · · | · · · ) for
D′, we obtain that c′1 and c′2 are both either even or odd.

If c3(c′3) is an odd crossing, there is no Gauss code for D(D′) so that the
number of labels between two appearances of all crossings of M(D)(M(D′)) is
even, respectively. Thus, c1(c′1) and c2(c′2) are both odd, respectively.

As a consequence, the conclusion follows. �

Now, we define the parity bracket polynomial for a virtual link diagram with
n components as follows.

Let D = ∪ni=1Di be an unoriented virtual link diagram with n components.
For each pair (i, j) (i < j), we define a parity state of a virtual link diagram
Di ∪Dj to be a labeled virtual graph obtained from Di ∪Dj by using a parity
of virtual link diagrams in Section 2 as follows: For each odd crossing in Di ∪
Dj replace the crossing by a graphical node. For each even crossing in Di ∪
Dj replace the crossing by one of its two possible smoothings, and label the
smoothing site by A or A−1 in the usual way. See Figure 3.
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Figure 3. Parity bracket polynomial

The resulting virtual graphs are taken up to the virtual equivalence and up to
the reduction rule, shown in Figure 3. The reduction rule is simply a R2-move
reducing the number of nodes in a graphical state. Then the graphical states
containing nodes are irreducible states and give as graphical coefficients to the
polynomial.

Definition 2. Let D = ∪ni=1Di be an unoriented virtual link diagram with n
components. Then a polynomial < D >P for D is defined by

< D >P=
∑
i<j

∑
s(i,j)

Aα−β(−A2 −A−2)γ−1G(s(i,j)).

In this formula, α(β) is the number of all A-splices (A−1-splices) of s(i,j), re-
spectively, γ is the number of components in the state s(i,j) and G(s(i,j)) is
the union of reduced graphical states containing graphical nodes. We call this
polynomial the even bracket polynomial.

Theorem 3.2. If D and D′ are equivalent unoriented virtual link diagrams by
all generalized Reidemeister moves but R1-moves, then < D >P=< D′ >P .

Proof. We may assume that the number of classical crossings of D is less than
or equal to that of D′. If D(D′) has one component, it has been proven by
Manturov [5]. Thus we assume that D(D′) has at least two components. For
i < j and a state s(s′) of Di ∪Dj(D

′
i ∪D′j), let αs(α

′
s′), βs(β

′
s′) and γs(γ

′
s′) be

the number of A-splices, A−1-splices and the number of components of s(s′),
respectively.

For a R2-move, we consider two cases according to the parities of two new
classical crossings a and b of D′i ∪D′j .
Case 1: a and b are both even crossings of D′i ∪D′j

By splicing at a and b of D′ and mimicking the proof of the original Kauffman
polynomial for virtual links, it is immediate that < D >P=< D′ >P .
Case 2: a and b are both odd crossings of D′i ∪D′j
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By the reduction rule in Figure, we have < D >P=< D′ >P .
For a R3-move, let c1, c2 and c3 be classical crossings between the top and the

middle arcs, the top and the bottom arcs, and the middle and the bottom arcs
of Di∪Dj in the process of R3-move, respectively. We denote the corresponding
three classical crossings of D′ by c′1, c

′
2 and c′3, see Figure 4. Then by Lemma

2.2, ci and c′i have the same parities for i = 1, 2, 3. Now by Lemma 3.1, the
case that two of ci’s (i = 1, 2, 3) are even cannot happen. So we consider the
following three cases according to the parities of three crossings in a local disc.

Figure 4. A R3-move

Case 1: ci and c′i are even crossings of D and D′, respectively for
i = 1, 2, 3. Then it is immediate that < D >P=< D′ >P by following the same
proof of the Kauffman polynomial.
Case 2: ci and c′i are odd crossings of D and D′, respectively for
i = 1, 2, 3.

Since D has at least two components, this case can be possible [2]. By replac-
ing odd crossings by nodes, we have the same virtual graphs and < D >P=<
D′ >P .
Case 3: one of ci’s is even and the others are odd.

By splicing at even crossings of D and D′, it is straightforward that αs = α′s′ ,
βs = β′s′ and γs = γ′s′ for an even state s of D and the corresponding even state
s′ of D′. Hence, we have < D >P=< D′ >P .

Therefore the conclusion follows. �

We normaize the polynomial by the writhe to obtain a virtual link invariant.

Definition 3. The normalized parity bracket polynomial of a virtual link dia-
gram D is defined as

PD(A) = (−A3)−w(D) < D >P .

Theorem 3.3. The normalized parity bracket polynomial is an invariant of
virtual links.

Proof. The writhe normalization makes the parity polynomial invariant under
R1-move. The conclusion follows from Theorem 3.3. �

Example 1. Let D be the Kishino knot diagram as shown in Figure 5.
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Figure 5. Kishino knot diagram and reduced graph

Then it is easy to check that every real crossing of D is odd. By replacing
odd crossings with nodes and the reduction rule, we have the irreducible virtual
graph G and PD(A) = G. Thus the Kishino knot diagram is non-trivial.

Figure 6. Different virtual link diagrams

Example 2. Let D1, D2 and D3 be virtual link diagrams in Figure 6.
Since there is a Gauss code (abcabd|dc) of D1, all real crossings are even.

Thus the normalized parity bracket polynomial and the Jones Kauffman polyno-
mial are the same.

Next, since there is no Gauss code of D2 so that the number of labels between
two appearances of x for all mixed crossings x is even, then c, d, e and f are
odd. Also, there is a Gauss code (abecabdf |cdef) of D2 so that a and b are
odd. Thus, all real crossings of D2 are odd. Then by computation, we have
PD(A) = (−A3)(−6)(−A2 −A−2).

On the other hand, for D3 it is easy to check that a and b are odd, and c and
d are even. Thus by computation, we have PD(A) = (−A3)(−4)(−A4 −A−4).

As a result, D1, D2 and D3 are different each other.
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