
KYUNGPOOK Math. J. 53(2013), 385-395

http://dx.doi.org/10.5666/KMJ.2013.53.3.385

DNA and the SU(3) Invariant of Knots and Links

Myeong-Ju Jeong∗

Department of Mathematics and Computer Science, Korea Science Academy of
KAIST, Busan 614-822, Republic of Korea
e-mail : mjjeong@kaist.ac.kr

Dae Gy Hong
Department of Obstetrics and Gynecology, Kyungpook National University School
of Medicine, Daegu, Korea
e-mail : chssa0220@hanmail.net

Abstract. To analyze the enzyme reaction on DNA knots and links, we study tangle

embedding and the number of reaction. By using the quantum SU(3) invariant of knots

and links we get a necessary condition for a tangle to be embedded in a knot or link.

Moreover we give a relationship between the number of reactions and the changes of the

value of quantum SU(3) invariant for the corresponding knots and links in a processive

recombination.

1. Introduction

DNA is a nucleic acid containing the genetic instructions used in the growth
and functioning of organisms. The main role of DNA molecules is the long-term
storage of information. For example it contains the instructions needed to construct
other components of cells, such as proteins and RNA molecules.

DNA consists of two long curves tangled and linked many times. Duplex DNA
consists of two backbone strands linked each other. Each strand consists of sugar
phosphate backbone with a nitrogenous base attached to each sugar. The DNA
of most bacteria and viruses are circular. Although human DNA is linear, it is
extremely long and tacked down to a protein scaffold at various points on the DNA.
This periodic attachment endows human DNA with topological constraints similar
to those for circular DNA. These topological constraints can interfere with vital
metabolic cellular processes such as replication and transcription. Enzymes are re-
quired to solve these topological entanglement problems that arise through cellular
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metabolism and replication. In this case, topoisomerases, which are enzymes that
mediate the passage of one segment of DNA through an enzyme-bridged transient
break in the backbone strands of another DNA segment, are responsible for unlink-
ing the DNA. Other enzymes called recombinases break two DNA segments and
interchange the ends, resulting in an exchange of genetic information.

Tangle calculus has been successfully used to study recombinases. The topolog-
ical approach to enzymology is an experimental protocol in which the descriptive
and analytical powers of topology and geometry are employed in an indirect ef-
fort to determine the enzyme mechanism and the structure of active enzyme-DNA
complexes in vitro.

The packing, twisting, and topological constraints all taken together mean that
topological entanglement poses serious functional problems for DNA. This entan-
glement would interfere with, and be exacerbated by, the vital life processes of
replication, transcription, and recombination. For information retrieval and cell vi-
ability, some geometric and topological features must be introduced into the DNA,
and others quickly removed. Some enzymes maintain proper geometry and topology
by passing one strand of DNA through another by means of a transient enzyme-
bridged break in one of the DNA strands. Other enzymes break the DNA apart
and recombine the ends by exchanging them, a move performed by recombinases.

Recently, it has been found that topoisomerases viz. Topoisomerase III and IV
also help in DNA recombination where the recombination is nonprocessive. The
description and quantization of the three-dimensional structure of DNA and the
changes in DNA structure due to the action of these enzymes requires extensive
use of geometry and topology in molecular biology. This use of mathematics as
an analytic tool is especially important because there is no experimental way to
observe the dynamics of enzymatic action directly. The DNA knots and links of the
reaction product DNA molecules are observed by gel electrophoresis and electron
microscopy.

By observing the changes in geometry (supercoiling) and topology (knotting and
linking) in DNA caused by an enzyme, the enzyme mechanism can be described and
quantized. The topological approach to enzymology poses an interesting challenge
for mathematicians as to how one can deduce enzyme mechanisms from the ob-
served changes of DNA geometry and topology. This requires the construction of
mathematical models for enzyme action and the use of these models to analyze the
results of topological enzymology experiments. The entangled form of the product
DNA knots and links contains information about the enzymes that made them. In
addition to utility in the analysis of experimental results, the use of mathematical
models forces all of the background assumptions about the biology to be carefully
laid out.

We want to analyze the change of the topology of synatosome (enzyme and
bound DNA), after an event of enzymatic action. DNA substrate molecule with
its two recombination sites can be viewed as a union of circle embeddings. There
are two movement of the strands, a global movement and local movement. By
an ambient isotopy of R3, the recombination sites are juxtaposed inside a ball.
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Local movement happens within a ball. Two strands in the ball are cut at the
recombination sites and then recombined.

The synatosome is modeled as a 2-string tangle denoted by E. Let Ob be the
all part of the DNA that is bound to the enzyme or to the accessory proteins. Let
P be the recombination sites. Then we have a tangle equation E = Ob + P . Let
Of be the tangle formed by the complement S3 − E and O = Of + Ob. Then the
whole synaptic complex can be presented as N(O + P ) = N(Of + Ob + P ). The
circular DNA is modeled as a knot or link that intersects the ball in 2 strands. The
entangled form of the product DNA knots and links contains information about the

enzymes that made them.
The recombinase action corresponds to a tangle surgery where the tangle P is

changed to the tangle R.
Now one round of recombination give a system of tangle equations as following{

N(O + P ) = N(Of +Ob + P ) = K1,
N(O +R) = N(Of +Ob +R) = K2,

where Of , Ob, P and R are unknown. When we assume that the tangle P is
changed to the tangle R by one round of recombination, it will be changed to
nR = R+ · · ·+R after n round of processive recombination. Thus we have a tangle
equation N(O + nR) = N(Of +Ob + nR) = Kn. See Figure 1.

L

L
O nR RfO bO R=

Figure 1.

To analyze enzyme reactions, rational tangle surgery are employed. In particular
it is needed to see whether a given type of tangle is embedded in a given DNA knots
or links.

Distances between knots/links involving 2-string rational tangle surgery have
been used to model biological reactions involving enzymes which perform tangle
surgery on DNA knots and links. Unlike topoisomerases which only use the strand
passage unknotting operation, recombinases use different tangle surgeries depending
upon the type of recombinase. Recombinases are enzymes which cut two segments
of DNA and interchange the ends, therefore allowing a reshuffling of genes. Recom-
bination can also cause mutations if the breaks occur within genes or regulatory
sequences and is also used in the repair of damaged DNA. Recombination allows
viruses to integrate into and excise out of host genomes and can be involved in the
regulation of transcription by turning genes on or off by inverting segments of DNA.
Biologists are interested in the mathematical question of determining all possible
tangle surgeries that a particular recombinase may use.
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I. Darcy and D. W. Sumners defined a local move of knots and links, called
an R-move for a tangle R. The R-move replace a trivial tangle in a link with
the tangle R. Define the R-distance between two given links L1 and L2 to be the
minimal number of the R-move needed to transform L1 to L2. By using rational
tangle surgery they gave formulas to determine the R-distance of two 4-plat knots
or links is less than or equal to 1 for rational tangles R as following

Theorem 1.1. [1] Let R = t
w−tangle, (w, t)= 1 and ay−bx = 1. Then there exists

s = tj+w for some integer j, such that the following are equivalent for |t| ≥ 2. For
t = ±1, (2) and (3) are equivalent and imply (1):
(1) d(S(a, b), S(u, v)) ≤ 1.
(2) If w � ±1 mod t, S(u, v) = S(−tb + sa, ty − sx) or S(tx + sa, ty + sb). Else
s = tpq ± 1, (p, q) = 1, p > 0 and S(u, v) = S(−tp2b+ sa, tp2y − sx).
(3) If w � ±1 mod t, S(u, v) = N(a/(−b+ aj) + (t/w)) or N(a/(x+ aj) + (t/w)).
Else s = tpq ± 1, (p, q) = 1, and S(u, v) = N((ad − be)/(aq − bp) − (e/p) + t)
where pd − qe = 1. In 4-plat form when s = tpq ± 1, S(u, v) =< cn, · · · , c0 +
a1, · · · , ak,±t,−ak, · · · ,−a1 >, where S(a, b) =< c0, · · · , cn >, n odd, and
p/(−q) = [a1, · · · , ak] , k odd.

The k-move on knots is an R-move where R is a k-tangle for an integer k as
shown in Figure 2. If the two strands of the k-move is oriented parallel (opposite),
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Figure 2. k-move

then the move is called the tk-move (tk-move). Two links L and L′ are said to be
k-equivalent if one can transform L to L′ by using the k±1-moves and two oriented
links L and L′ are said to be tk-equivalent and tk-equivalent if one can transform L

to L′ by using the tk
±1-moves and t

±1
k -moves respectively.

The k- tk- and tk- equivalences between two knots particularly for a trivial knot
has been studied by many knot theorists.

In 1988, J. H. Przytycki ([9]) used the evaluation of the HOMFLYPT polynomial
and the Kauffman polynomial to distinguish two tk-nonequivalent knots and gave
some information on how many tk-moves are needed to go from one knot to the
other if they are tk-equivalent. He also studied t3-equivalence and t4-equivalence of
knots ([10]). In a different view point Kim, Park and the first author used some
derivatives of the Conway polynomial and the Jones polynomial which are Vassiliev
invariants to get some criterions for the tk-equivalence and some results on how
many tk-moves are needed to go from one knot to the other if they are tk-equivalent
([2]).

It is natural questions to ask whether two links are k-equivalent, or tk-equivalent,
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or tk-equivalent and if they are, how many moves are needed to go from one link to
the other in each case. In particular, if k = 2 and the second knot is the unknot, it
is the question of the classical unknotting number. Kim, Park and the first author
studied twist moves of knots by using the second finite type invariant of knots. A
twist move is an R-move where R is an n-tangle for an integer n.

Theorem 1.2. [2] Let K and K ′ be two t2i-equivalent knots for a positive integer
i. Let a2(K) be the coefficient of the Conway polynomial of K. Then{

a2(K) ≡ a2(K
′) (mod i

2) if i is even,

a2(K) ≡ a2(K
′) (mod i ) if i is odd.

For a positive integer k, the tk-distance between two tk-equivalent knots K and K ′,
denoted by |K,K ′|tk , is defined to be the minimum number of tk

±1 moves needed
to go from K to K ′. For k > 2, the tk-level distance between the tk-equivalent
knots K and K ′, denoted by |K,K ′|levtk

, is defined to be the number of tk moves

minus the number of t−1
K -moves needed to go from K to K ′ ([9]).

Theorem 1.3. [2] Let K and K ′ be two t2i-equivalent knots for an even positive
integer i. Then

a2(K
′)− a2(K) ≡ i(i− 1)

2
|K,K ′|levt2i (mod i).

In Section 2, we introduce a module of oriented trivalent graph (k, k)-tangles mod-
ulo the Kuperberg’s SU(3) skein relation. By using the Euler characteristic of
sphere, we find basis for the modules when k = 1, 2. In Section 3, we find necessary
condition for a (2,2)-tangle to be embedded in a knot or link by using representa-
tion of a tangle as a combination of generators in the module. We can apply this
to study enzyme reaction on DNA knots and links.

2. Embedding of a Tangle

D. A. Krebes introduced a necessary condition for a (2, 2)-tangle to be embedded
in a link L by using the determinant of links. He showed that the greatest common
divisor of the determinants of the numerator and the denominator of t is a divisor
of the determinant of L if a (2, 2)-tangle t is embedded in a link L [3].

Silver and Williams ([11]) extended the Krebes result to virtual links by using
the Fox coloring for a prime factor. Suppose that a tangle t is embedded in a virtual
link L. They showed that n is a divisor of the determinant of L if n is a common
prime factor of the determinants of the numerator and denominator of t. Krebes,
Silver and Williams developed these results by using the virtual Temperley-Lieb
algebra [4].

Now we consider the SU(3) invariant introduced by G. Kuperberg ([5]). Let F
be an oriented surface. We consider oriented trivalent graphs possibly with loops
with no vertices. Assume that at each vertex the three edges are oriented in the
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same way all inner or all outer. A diagram in F is an oriented trivalent graph
immersed in F such that the singular points are only transverse double points, to
each of which over and under crossing information is associated; this means that
locally it is the diagram of an oriented link or a trivalent graph. Throughout the
rest of this paper diagrams are considered up to isotopy in F . From now on we
assume that the surface F is the 2-sphere S2.

We generalize oriented (k, k)-tangles to oriented trivalent graph (k, k)-tangles
by allowing them to have trivalent vertices. The orientations of the three edges
adjacent to a vertex of an oriented trivalent graph tangle are assumed to be all
inner or outer. Similarly to the closure of a braid we define the closure T of an
oriented trivalent graph (k, k)-tangle T . See Figure 3.

T T
Figure 3. An oriented trivalent graph (3,3)-tangle and its closure.

Kuperberg introduced a linear skein theory for SU(3). We define the SU(3)
skein module of oriented surfaces as follows:
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Figure 4. The Kuperberg skein relations.
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We assign 1 to the trivial knot diagram. Then it becomes a regular isotopy
invariant of oriented links. Denote the polynomial obtained by applying the Kuper-
berg skein relations to an oriented link L by [L] ([5]). We get an invariant of oriented
link L by normalizing it by multiplying (A8)−w(L), where w(L) is the writhe of L
([5]). We define q(L) = (A8)−w(L)[L].

For an oriented (k, k)-tangle T , we write the family of oriented trivalent graph
(k, k)-tangles with the same boundary orientation with T by TT . Let R be the ring
Z[A,A−1] of integral Laurent polynomial ring with indeterminate A. We denote
the free R-module generated by TT by RTT . Let RTT / ∼ be the quotient module
of RTT by the Kuperberg skein relations.

Lemma 2.1. Let T be an oriented graph (k, k)-tangle with n crossings. Let D
be the diagram obtained from the closure T of T when we change each crossing as
Figure .

Figure 5.

Assume that D forms a triangulation of the two sphere S2. Let α and β be
the number of bigons and 4-gons in D respectively. Then we have an inequality
2α+ β ≥ 6.

Proof. Let F (D), E(D) and V (D) be the number of faces, edges and vertices of D
respectively. Since the Euler characteristic χ(S2) = 2, F (D) − E(D) + V (D) = 2
and F (D) = E(D) + 2 − V (D). For each face F of D, we denote the number
of edges in F by E(F ). Since

∑
F : face of D E(F ) = 2E(D), we have 2α + 4β +

6(E(D) + 2 − V (D) − α − β) ≤ 2E(D). So 2E(D) + 6 − 3V (D) ≤ 2α + β. Since
E(D) : V (D) = 3 : 2, we see that the inequality 2α+ β ≥ 6 holds.

In particular if T is an oriented (k, k)-tangle with n crossings, then we see that
α+ β ≤ n+ 2 by considering F (D).

Lemma 2.2. If T is an oriented (1, 1)-tangle then the quotient module RTT / ∼ is
generated by the trivial tangle without any crossing.

Proof. For an oriented trivalent graph (1, 1)-tangle in TT , we have a sum of oriented
trivalent graphs with coefficients in the ring R by applying theK2 and K3 relations
for each crossing of S. Now it is enough to show that an oriented trivalent graph
(1, 1)-tangle S without any crossing is generated by the trivial oriented (1, 1)-tangle.
We use mathematical induction argument on the sum n(S)+V (S) of the number of
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connected components n(S) of S and the number of trivalent vertices V (S) of S. If
n(S) + V (S) = 1 then S is the trivial (1, 1)-tangle. Assume that n(S) + V (S) > 1.
If V (S) = 0 then S is union of n(S) − 2 circle components and the trivial tangle.
suppose that V (S) > 1. Let S′ be a component of S with a trivalent vertex. Then
S′ or S′ forms a triangulation of the two sphere S2. By applying Lemma 2.1, we see
that there is a bigon or 4-gon in S′. When we apply K4 or K5 to the bigon or 4-gon,
we can reduce the sum of the number of connected components and vertices.

The skein module of the space of (2, 2)-tangles are generated by the following
basis depending on the boundary orientation of the tangle.

Lemma 2.3. Let T be an oriented (2, 2)-tangle with parallel boundary orientation
as u0 as shown in Figure . Then the Kuperberg skein module RTT / ∼ is generated
by the tangles u0 and u1.

Proof. Since any crossing can be spliced by K2 and K3 relations, we consider an
oriented trivalent graph (2, 2)-tangle S. We will use mathematical induction on
the sum n(S) + V (S) of the number of connected components n(S) of S and the
number of trivalent vertices V (S) of S again. If V (S) = 0 then S is generated by
u0. Suppose that V (S) > 1 and S′ is a connected component of S with a trivalent
vertex. Since S′ or S′ forms a triangulation of the two sphere S2, by Lemma
2α+β ≥ 6, where α and β are the numbers of bigons and 4-gons in S′ respectively.
If β is 0 then α ≥ 3 and S′ has a bigon or equals to u1. If β is greater than 0 then
the sum of the number of components of S and the number of vertices of S can be
reduced by applying K5.

Similarly to the argument of the proof of Lemma 2.3, we can show the following

Lemma 2.4. Let T be an oriented (2, 2)-tangle with opposite boundary orientation
as w0 as shown in Figure . Then the Kuperberg skein module RTT / ∼ is generated
by the tangles w0 and w1.

0u 1u 1w0w
Figure 6.

3. Tangle Embedding and the SU(3) Invariant

In this section we give necessary conditions for a tangle to be embedded in a
given oriented knot or link by using the SU(3) invariant based on the Kuperberg’s
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skein module. We can apply the result to analyze the enzyme reaction.

Lemma 3.1. Let T be a (2, 2)-tangle with a parallel boundary orientation as u0.
Assume that T = au0+bu1 for a, b ∈ Z[A,A−1] in the SU(3) skein module RTT / ∼.
Let d be a common divisor of a and b. If T embeds to a link L then d divides q(L).

Proof. If T embeds to a link L then there exists a (2, 2)-tangle S such that L = ST .
By Lemma 2.3, S = a′u0 + b′u1 for some a, b ∈ Z[A,A−1]. Then

[L] =aa′[u0u0] + ab′[u1u0] + a′b[u0u1] + bb′[u1u1]

=aa′[u0] +
(
ab′ + a′b+ bb′(A3 +A−3)

)
[u1].

Therefore if d|a and d|b, then d|[L] and d|q(L).

Similarly by applying Lemma 2.4 to a (2, 2)-tangle with an opposite boundary
orientation, we get

Theorem 3.2. Let T be a (2, 2)-tangle with an opposite boundary orientation as
w0. Assume that T = aw0 + bw1 for a′, b′ ∈ Z[A,A−1] in the SU(3) skein module
RTT / ∼. Let d be a common divisor of a and b. If T embeds to a link L then d
divides q(L).

Assume that one round of recombination gives tangle equations as following{
N(O + P ) = N(Of +Ob + P ) = K1,
N(O +R) = N(Of +Ob +R) = K2,

If we see the two knots or links K1 and K2, then by applying Theorem and
Theorem , we may find candidates for the tangle O. For example if O = au0 + bu1,
then the greatest common divisor of a and b should divide q(K1) and q(K2). Now
we consider processive recombination. Since the orientation of a the knot or link
N(O + nR) is compatible, we see that the boundary orientation of the tangle R is
opposite.

Theorem 3.3. Assume that N(O + nR) = Kn and R = aw0 + bw1. If d is a
common divisor of a and b, then dn is a divisor of q(Kn).

Proof. Let α = (A6 + 1+A−6). The sum of w0 and w0 in RTT / ∼ is illustrated in
Figure . If R = aw0 + bw1, then

2R =a2αw0 + abw0 + abw0 + b2w1

=(a2α+ 2ab)w0 + b2w1

=
1

α

(
(aα+ b)2 − b2

)
w0 + b2w1.



394 M. J. Jeong and D. G. Hong

0w

1w

0w

0 1w w+

0 0w w+

1 0w w+

1 1w w+

=

=

=

=

=

=

=

=

0w

Figure 7.

Inductively, we can see that nR = 1
α ((aα+ b)n − bn)w0 + bnw1. If d is a

common divisor of a and b then dn is a common divisor of 1α ((aα+ b)n − bn) and
bn. Therefore dn is a divisor of [Kn] and q(Kn).

In a tangle model, The circular DNA substrates and products are regarded as
knots or links. Site-specific recombination arising from enzyme reaction affects the
topology of the knots or links. By using this result, we may guess how many enzyme
reaction happened and the topological change by using the types of the tangle R.
Then we may analyze enzymatic mechanisms based on the experimental data better
and get a map to manipulate DNA topologically.

Acknowledgement. The authors would like to thank the referee for careful read-
ing and kind comments.

References

[1] I. K. Darcy and D. W. Sumners, Ratioal tangle distance on knots and links,
Math. Proc. Camb. Phil. Soc., 128, 2000, 497-510.

[2] M.-J. Jeong, Eun-Jin Kim and C.-Y. Park, Twist moves and Vassiliev invari-
ants, to appear in J. of Knot Theory and Its Ramifications.

[3] D. A. Krebes, An obstruction to embedding 4-tangles in links, J. Knot Theory
Ramif., 8(1999), 321-352.

[4] D. A. Krebes, D. S. Silver and S. G. Williams, Persistent invariants of tangles,
Preprint.

[5] G. Kuperberg, The quantum G2 link invariant, Preprint.



DNA and the SU(3) Invariant of Knots and Links 395

[6] J. C. Misra, S. Mukherjee and A. K. Das, A mathematical model for enzymatic
Action on DNA knots and links, Mathematical and Computer Modelling, 39,
2004, 1423-1430.

[7] Y. Ohyama, A new numerical invariant of knots induced from regular diagrams,
Topology and Its Applications 37(1990), 249-255.

[8] Y. Ohyama, Vassiliev invariants and similarity of knots, Proc. Amer. Math.
Soc. 123(1993), 287-291.

[9] J. H. Przytycki, tk moves on links, Braids, Comtemp. Math. 78, Amer. Math.
Soc., 1988, 615-656.

[10] J. H. Przytycki, t3, t4 moves conjecture for oriented links with matched dia-
grams, Math. Proc. Cambridge Phil. Soc., 108, 1990, 55-61.

[11] D. S. Silver and S. G. Williams, Virtual tangles and a theorem of Krebes, J.
Knot Theory Ramifications 8(1999), 941-945.


