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SKEW BRACE ENHANCEMENTS AND VIRTUAL LINKS

Melody Chang and Sam Nelson

Abstract. We use the structure of skew braces to enhance the biquandle

counting invariant for virtual knots and links for finite biquandles defined

from skew braces. We introduce two new invariants: a single-variable poly-
nomial using skew brace ideals and a two-variable polynomial using the

skew brace group structures. We provide examples to show that the new
invariants are not determined by the counting invariant and hence are

proper enhancements.

1. Introduction

Skew braces are a type of algebraic structure consisting of a set with two
group operations (analogous to a ring) which interact via a kind of modified
distributive law. They have been studied for the last decade or so in papers such
as [1,4–6]. Beyond their inherent algebraic interest, skew braces are important
in knot theory because they provide solutions to the set-theoretic Yang-Baxter
equation, which in turn lead to invariants of knots.

Set-theoretic Yang-Baxter solutions are also provided by biquandles, which
have been studied for about the last two decades; see [3] and the references
therein for more. Biquandle-based knot invariants include many examples of en-
hancements, invariants which specialize to the integer-valued biquandle count-
ing invariant (i.e., the cardinality of the set of biquandle homomorphisms from
the fundamental biquandle of the knot or link to a fixed finite biquandle) but
which contain more information beyond merely the set’s cardinality.

A skew brace defines a biquandle, and thus the notion of biquandle coloring
extends to a notion of skew brace coloring, allowing for skew brace counting
invariants and enhancements thereof. Like many biquandle-based invariants of
classical knots and links, these skew brace invariants extend to the setting of
virtual knot theory in a natural way by simply ignoring the virtual crossings,
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i.e., letting skew brace colors remain constant when passing through virtual
crossings.

In this paper we define two infinite families of new polynomial enhance-
ments of the biquandle counting invariant for biquandles which come from
skew braces. The paper is organized as follows. In Section 2 we collect a few
definitions and observations about skew braces and their relationship with bi-
quandles. We recall the biquandle counting invariant and define the skew brace
counting invariant for finite biquandles and skew braces. In Section 3 we in-
troduce the new enhanced invariants: the two-variable skew brace enhanced
polynomial and the one-variable skew brace ideal polynomial. In Section 4 we
provide examples to illustrate the computation of the invariant and to estab-
lish that the new invariants are proper enhancements, i.e., that they are not
determined by the counting invariant. In Section 5 we end with some questions
for future research.

2. Skew braces and skew brace colorings

We begin with a definition; see [1, 4–6] for more.

Definition 1. A skew brace is a set X with two group operations which we
will denote by (x, y) 7→ x ◦ y and (x, y) 7→ x ∗ y with inverses denoted by x◦

and x∗, satisfying a modified distributive law

x ◦ (y ∗ z) = (x ◦ y) ∗ x∗ ∗ (x ◦ z).

To familiarize ourselves a little with the algebra of skew braces, let us note
the standard fact (see [1] for example) that this modified distributive law has
the useful consequence that the two group identities are equal.

Lemma 1. Let X be a skew brace. Then the identity elements with respect to
both operations are the same.

Proof. Let us temporarily denote the ∗-identity element by e∗ and the ◦-identity
element by e◦. Then we observe that for any x, y ∈ X we have

x ◦ y = x ◦ (e∗ ∗ y) = (x ◦ e∗) ∗ x∗ ∗ (x ◦ y)

and thus

(x ◦ y) ∗ (x ◦ y)∗ = (x ◦ e∗) ∗ x∗ ∗ (x ◦ y) ∗ (x ◦ y)∗

so we have

e∗ = (x ◦ e∗) ∗ x∗

which implies

x = x ◦ e∗.
Then

x◦ ◦ x = x◦ ◦ x ◦ e∗
which says e◦ = e∗ as required. □
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For simplicity, we will denote the common identity element of both opera-
tions as e.

Let X be a skew brace and K an oriented classical or virtual knot or link
diagram. A skew brace coloring of K, also called an X-coloring of K, is an
assignment of elements in X to each semiarc in K such that at every classical
crossing we have one of the following pictures:

At virtual crossings, the colors on the semiarcs are not changed.
Next we recall a definition found in [3]:

Definition 2. A biquandle is a set X with binary operations ▷, ▷ satisfying

(i) For all x ∈ X,

x▷x = x▷x,

(ii) For all x, y ∈ X, the operations ▷ and ▷ are right-invertible and the
map of pairs S(x, y) = (y▷x, x▷y) is invertible, and

(iii) For all x, y, z ∈ X the exchange laws

(x▷y)▷(z▷y) = (x▷z)▷(y▷z),

(x▷y)▷(z▷y) = (x▷z)▷(y▷z),

(x▷y)▷(z▷y) = (x▷z)▷(y▷z)

are satisfied.

As noted in [4], skew brace colorings provide solutions to the set-theoretic
Yang Baxter equation. In fact, we have:

Theorem 2 (Guarnieri and Vendramin). A skew brace is a biquandle under
the operations

x▷y = y◦ ◦ (x ∗ y) and x▷y = y◦ ◦ (y ∗ x).

The result has been previously established in Corollary 3.3 of [7] using dif-
ferent notation; let us see how it works here using our notation.

Proof. We must verify that the biquandle axioms are satisfied. Checking, we
have

x▷x = x◦ ◦ (x ∗ x) = x▷x

as required, and axiom (i) is satisfied.
For axiom (ii), we note that the operations

x▷−1y = (y ◦ x) ∗ y∗ and x▷−1y = y∗ ∗ (y ◦ x)
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are right-inverses for ▷ and ▷:

(x▷−1y)▷y = y◦ ◦ ((y ◦ x) ∗ y∗ ∗ y) = x,

(x▷y)▷−1y = (y ◦ y◦ ◦ (x ∗ y)) ∗ y∗ = x,

(x▷−1y)▷y = y◦ ◦ (y ∗ (y∗ ∗ (y ◦ x))) = x and

(x▷y)▷−1y = y∗ ∗ (y ◦ (y◦ ◦ (y ∗ x))) = x

and that the map S−1 : X ×X → X ×X given by

S−1(x, y) = (((x ◦ y◦) ∗ x∗)◦, ((x ◦ y◦) ∗ x∗)◦ ◦ x ◦ y◦)
is the inverse of the map S(x, y) = (x◦ ◦ (x ∗ y), y◦ ◦ (x ∗ y)) = (y▷x, x▷y).

Now, let us consider the exchange laws. We compute

(x▷y)▷(z▷y) = [y◦ ◦ (x ∗ y)]▷[y◦ ◦ (z ∗ y)]
= [y◦ ◦ (z ∗ y)]◦ ◦ [(y◦ ◦ (x ∗ y)) ∗ (y◦ ◦ (z ∗ y))]
= [y◦ ◦ (z ∗ y)]◦ ◦ [y◦ ◦ (x ∗ y)] ∗ [y◦ ◦ (z ∗ y)]◦∗

∗ [(y◦ ◦ (z ∗ y))◦ ◦ (y◦ ◦ (z ∗ y))]
= [y◦ ◦ (z ∗ y)]◦ ◦ [y◦ ◦ (x ∗ y)] ∗ [y◦ ◦ (z ∗ y)]◦∗

= [y◦ ◦ (z ∗ y)]◦ ◦ [y◦ ◦ (x ∗ y)] ∗ [(z ∗ y)◦ ◦ y]∗

= [(z ∗ y)◦ ◦ y ◦ y◦ ◦ (x ∗ y)] ∗ [(z ∗ y)◦ ◦ y]∗

= [(z ∗ y)◦ ◦ (x ∗ y)] ∗ [(z ∗ y)◦ ◦ y]∗

= ((z ∗ y)◦ ◦ x) ∗ (z ∗ y)◦∗ ∗ [(z ∗ y)◦ ◦ y] ∗ [(z ∗ y)◦ ◦ y]∗

= ((z ∗ y)◦ ◦ x) ∗ (z ∗ y)◦∗

and

(x▷z)▷(y▷z) = [z◦ ◦ (x ∗ z)]▷[z◦ ◦ (z ∗ y)]
= [z◦ ◦ (z ∗ y)]◦ ◦ [(z◦ ◦ (x ∗ z)) ∗ (z◦ ◦ (z ∗ y))]
= [(z◦ ◦ (z ∗ y))◦ ◦ (z◦ ◦ (x ∗ z))] ∗ [z◦ ◦ (z ∗ y)]◦∗

∗ [(z◦ ◦ (z ∗ y))◦ ◦ (z◦ ◦ (z ∗ y))]
= [(z◦ ◦ (z ∗ y))◦ ◦ (z◦ ◦ (x ∗ z))] ∗ [z◦ ◦ (z ∗ y)]◦∗

= [(z ∗ y)◦ ◦ z ◦ z◦ ◦ (x ∗ z)] ∗ [z◦ ◦ (z ∗ y)]◦∗

= [(z ∗ y)◦ ◦ (x ∗ z)] ∗ [(z ∗ y)◦ ◦ z]∗

= ((z ∗ y)◦ ◦ x) ∗ (z ∗ y)◦∗ ∗ [(z ∗ y)◦ ◦ z] ∗ [(z ∗ y)◦ ◦ z]∗

= ((z ∗ y)◦ ◦ x) ∗ (z ∗ y)◦∗

and the first exchange law is satisfied. The other two are similar and left to the
reader. □

A skew brace coloring is a biquandle coloring by the associated biquandle of
the skew brace. Hence, it follows that the number of skew brace colorings of an
oriented classical or virtual knot or link diagram K by a finite skew brace X is
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a knot invariant, which we will denote by ΦZ
X(K) = |C(K,X)|, where C(K,X)

denotes the set of X-colorings of K.
The set-theoretic Yang-Baxter solutions defined by skew braces with com-

mutative ∗ operation are involutive, meaning that the vertical map of pairs

r(x, y) = (x∗ ∗ (x ◦ y), (x∗ ∗ (x ∗ y))◦ ◦ x ◦ y)
satisfies r2 = Id. More precisely, we note that the first component of r2(x, y) is

(x∗ ∗ (x ◦ y))∗ ∗ [(x∗ ∗ (x ◦ y)) ◦ ((x∗ ∗ (x ∗ y))◦ ◦ x ◦ y)]
= (x∗ ∗ (x ◦ y))∗ ∗ [x ◦ y]
= (x ◦ y)∗ ∗ (x∗)∗ ∗ (x ◦ y)
= (x ◦ y)∗ ∗ x ∗ (x ◦ y)

which equals x if ∗ is commutative, and the second component is

[(x ◦ y)∗ ∗ x ∗ (x ◦ y)]◦ ◦ (x∗ ∗ (x ◦ y)) ◦ (x∗ ∗ (x ◦ y))◦ ◦ x ◦ y
= [(x ◦ y)∗ ∗ x ∗ (x ◦ y)]◦ ◦ x ◦ y

which again reduces to y in the case that ∗ is commutative.

Remark 1. Various notational conventions for the skew brace operations are
used in the literature, including commonly writing + for ∗ and −x for x∗ even
when ∗ is noncommutative. To avoid certain errors, e.g. drawing the conclusion
that all skew braces are involutive, we will prefer to use the ∗ notation.

The fact that all groups of cardinality less than six are abelian implies that
the coloring invariant and its enhancements for skew braces with fewer than
six elements cannot distinguish between knots or links related by the 2-move:

Since the 2-move can be combined with a Reidemeister II move to yield a
crossing change,
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it follows that knots and links in various categories (classical, virtual, flat vir-
tual, etc.) which are related by crossing change cannot be distinguished by
involutory skew brace invariants. Indeed, involutory skew brace counting in-
variants and their enhancements are trivial for classical knots and links. How-
ever, virtual knots are links fall into several distinct classes under the virtual
Reidemeister moves together with crossing changes; as we will show, involutory
skew brace invariants and their enhancements can be effective at distinguish-
ing these classes of virtual knots and links. Moreover, involutory skew brace
invariants are well-defined for flat virtual knots.

Finite skew brace structures on a set X can be specified in various ways
– algebraic formulas for the two group operations, using pairs of tuples as
described in [5], etc. For our purposes it will be most useful to specify a skew
brace on X = {1, 2, . . . , n} with a pair of operation tables for the two group
operations, which we will call structure tables.

Example 1. The structure tables

◦ 1 2 3 3
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

∗ 1 2 3 3
1 1 2 3 4
2 2 3 4 1
3 3 4 1 2
4 4 1 2 3

define a skew brace with ◦-group isomorphic to the Klein 4-group Z2 ⊕Z2 and
∗-group isomorphic to Z4.

If ∗ is nonabelian, then the skew brace’s resulting set-theoretic Yang-Baxter
solution r may not be involutive; these are the examples which can give us
interesting invariants of classical knots and links.

Example 2. The skew brace structure on the set X = {1, 2, 3, 4, 5, 6} defined
by the structure tables

◦ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 3 1 5 6 4
3 3 1 2 6 4 5
4 4 5 6 3 1 2
5 5 6 4 1 2 3
6 6 4 5 2 3 1

∗ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 3 1 5 6 4
3 3 1 2 6 4 5
4 4 6 5 1 3 2
5 5 4 6 2 1 3
6 6 5 4 3 2 1

defines a non-involutive set-theoretic Yang-Baxter solution with for example
r(4, 3) = (2, 5) ̸= (4, 3).

3. Skew brace enhancements

In this section we introduce new invariants of oriented virtual knots and
links which enhance the skew brace counting invariant. More precisely, these
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are polynomial invariants which specialize to the counting invariant when the
variables are set equal to 1.

Recall that for any biquandle coloring f ∈ C(X,K), the image of f , denoted
Im(f), is the biquandle closure of the set of biquandle elements used in f , i.e.,
the set of elements of X obtainable from biquandle elements used in f using
the biquandle operations ▷ and ▷ (as well as their right inverses, though for
finite biquandles the right inverse operations can be expressed in terms of the
standard operations). Let us denote the group closures of S ⊂ X under the
group operations ∗ and ◦ by S∗ and S◦, respectively.

Definition 3. Let (X, ∗, ◦) be a skew brace. For any oriented classical or virtual
knot or link K, we define the skew brace enhanced polynomial of K to be

ΦSB
X (K) =

∑
f∈C(K,X)

u|Im(f)◦|v|Im(f)∗|.

Example 3. Let us illustrate the computation of the invariant for the virtual
Hopf link on the left and compare it with the unlink of two components on the
right:

Colorings of the virtual Hopf link are pairs x, y ∈ X satisfying x▷y = x and
y▷x = y while colorings of the unlink are just pairs x, y ∈ X without restriction.
Then for example let X be the skew brace specified by the structure tables:

◦ 1 2 3 4
1 1 2 3 4
2 2 3 4 1
3 3 4 1 2
4 4 1 2 3

∗ 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1

The coloring equations for the virtual Hopf link in terms of the skew brace

x▷y = y◦ ◦ (x ∗ y) = x,

y▷x = x◦ ◦ (x ∗ y) = y.

Of the sixteen potential colorings, as the reader can verify, there are four which
do not satisfy the conditions: (x, y) ∈ {(2, 2), (2, 4), (4, 2), (4, 4)}. For the twelve
valid colorings, there are eight which have closures of the entire set under both
group operations, three which have closures of cardinality two under both group
operations, and one with closures of cardinality 1 under both group operations.
Hence, we have

ΦSB
X (vHopf) = 8u4v4 + 3u2v2 + uv.
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Repeating for the other colorings of the unlink, we have

ΦSB
X (U2) = 12u4v4 + 3u2v2 + uv.

Hence the invariant detects the non-triviality of the virtual Hopf link.

Next, we have a definition from [5].

Definition 4. Let X be a skew brace. A subset I ⊂ X is an ideal if for all
x, y ∈ I and z ∈ X the elements

y◦ ◦ x, z∗ ∗ x ∗ z, z◦ ◦ x ◦ z and z∗ ∗ (z ◦ x)

are also in I.

Example 4. The skew brace with structure tables

◦ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 3 4 5 6 1
3 3 4 5 6 1 2
4 4 5 6 1 2 3
5 5 6 1 2 3 4
6 6 1 2 3 4 5

∗ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 1 6 5 4 3
3 3 4 5 6 1 2
4 4 3 2 1 6 5
5 5 6 1 2 3 4
6 6 5 4 3 2 1

has ideals including {1}, {1, 3, 5} and {1, 2, 3, 4, 5, 6}.

Definition 5. Let X be a skew brace and K an oriented knot or link repre-
sented by a diagram D. Let I(Im(f)) be the skew brace ideal generated by the
image of f . We define the skew brace ideal polynomial of K with respect to X
to be

ΦI
X(K) =

∑
f∈C(K,X)

u|I(Im(f))|.

We can now state our main theorem.

Theorem 3. For any skew brace (X, ∗, ◦), the skew brace enhanced polynomials
and skew brace ideal polynomials are invariants of oriented classical and virtual
knots and knots and links.

Proof. The image sub-biquandle Im(f) of a biquandle coloring is already an
invariant for each coloring; it follows that the contributions to the polynomials
from each coloring are not changed by Reidemeister moves. □

4. Examples

In this section we collect some computations and examples of the new in-
variants.
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Example 5. Let L and L′ be the virtual links

and X the skew brace with structure tables:

◦ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 4 3 8 7 6 5
3 3 4 1 2 6 5 8 7
4 4 3 2 1 7 8 5 6
5 5 8 6 7 3 1 2 4
6 6 7 5 8 1 3 4 2
7 7 6 8 5 2 4 3 1
8 8 5 7 6 4 2 1 3

∗ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 4 3 8 7 6 5
3 3 4 1 2 6 5 8 7
4 4 3 2 1 7 8 5 6
5 5 7 6 8 3 1 4 2
6 6 8 5 7 1 3 2 4
7 7 5 8 6 2 4 1 3
8 8 6 7 5 4 2 3 1

Then our python computations give skew brace enhanced polynomial values

ΦSB
X (L) = 144u8v8 + 154u4v4 + 21u2v2 + uv

̸= 168u8v8 + 130u4v4 + 21u2v2 + uv = ΦSB
X (L′)

and

ΦI
X(L) = 144u8 + 168u4 + 7u2 + u ̸= 168u8 + 144u4 + 7u2 + u = ΦI

X(L′).

Since both links have 320 X-colorings, this example shows that both enhance-
ments are proper and not determined by the counting invariant.

Example 6. We computed the two-variable invariant for the sets of prime
virtual knots with up to four classical crossings as found at the knot atlas [2]
with respect to the skew brace X with structure tables:

◦ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 6 5 4 3 8 7
3 3 6 1 8 7 2 5 4
4 4 7 8 3 2 5 6 1
5 5 8 7 6 1 4 3 2
6 6 3 2 7 8 1 4 5
7 7 4 5 2 3 8 1 6
8 8 5 4 1 6 7 2 3

∗ 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 6 8 7 3 5 4
3 3 6 1 7 8 2 4 5
4 4 8 7 1 6 5 3 2
5 5 7 8 6 1 4 2 3
6 6 3 2 5 4 1 8 7
7 7 5 4 3 2 8 1 6
8 8 4 5 2 3 7 6 1
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The results are collected in the table:
ΦSB

X (L) L
5u2v2 + uv 3.1, 3.2, 3.4, 4.10, 4.11, 4.15, 4.17, 4.19, 4.20, 4.22, 4.23, 4.24, 4.29, 4.32, 4.34, 4.35,

4.38, 4.39, 4.42, 4.49, 4.50, 4.57, 4.62, 4.63, 4.66, 4.67, 4.70, 4.78, 4.79
2u8v8 + 5u2v2 + uv 2.1, 3.2, 3.5, 3.6, 3.7, 4.3, 4.6, 4.12, 4.13, 4.14, 4.18, 4.21, 4.25, 4.26, 4.27, 4.28, 4.30,

4.31, 4.36, 4.37, 4.40, 4.41, 4.43, 4.44, 4.45, 4.46, 4.47, 4.48, 4.51, 4.53, 4.54, 4.59,
4.60, 4.61, 4.64, 4.65, 4.68, 4.69, 4.71, 4.73, 4.74, 4.75, 4.80, 4.81, 4.82, 4.83, 4.84,
4.86, 4.87, 4.88, 4.91, 4.92, 4.93, 4.94, 4.95, 4.96, 4.97, 4.99, 4.100, 4.101, 4.102,
4.103, 4.104, 4.105, 4.106, 4.108

6u8v8 + 5u2v2 + uv 4.9, 4.16, 4.33, 4.52, 4.58, 4.72
14u8v8 + 5u2v2 + uv 4.1, 4.2, 4.4, 4.5, 4.7, 4.8, 4.55, 4.56, 4.76, 4.77, 4.85, 4.89, 4.90, 4.98, 4.107

We note that the enhancement information provides additional information
beyond the counting invariant in that it filters the colorings into classes. Each
virtual knot in this example has a uv term with coefficient 1 coming from the
monochromatic coloring by the identity element and a u2v2 term with coeffi-
cient 5; the differences are in the coefficients of the surjective u8v8 colorings,
which range from zero to 14. In particular, the virtual knots in the table with
invariant values other than 2u8v8 + 5u2v2 + uv cannot be unknotted using
crossing changes together with virtual Reidemeister moves.

Example 7. Provided ∗ is noncommutative, skew brace invariants can be ef-
fective at distinguishing classical knots and links as well as virtual and flat
knots and links. For example, the skew brace X with noncommutative ∗ oper-
ation in Example 2 distinguishes the trefoil knot 31 from the figure eight knot
41 via the counting invariant, with

ΦZ
X(31) = 12 ̸= 6 = ΦZ

X(41).

Our enhancements further refine this information into

ΦI
X(31) = 9u6 + 2u3 + u ̸= 3u6 + 2u3 + u = ΦI

X(41)

and

ΦSB
X (31) = 8u6v6+2u3v3+u2v2+uv ̸= 2u6v6+2u3v3+u2v2+uv = ΦSB

X (41).

5. Questions

We conclude this short paper with a list of questions for future study.

• What additional enhancements of the skew brace counting invariant
using the skew brace structure are possible?

• In our examples, the powers on u and v are always the same; is this
true in general, or a consequence of the small cardinality of our example
skew braces?
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