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KNOTS AND LINKS IN LINEAR EMBEDDINGS OF Kg

YounGsik Hua AND CHOON BAE JEON

ABSTRACT. We investigate the number of knots and links in linear em-
beddings of Kg, the complete graph with 6 vertices. Concretely, we show
that any linear embedding of Kg contains either only one Hopf link, or
three Hopf links and one trefoil knot.

1. Introduction

Throughout this paper we consider a graph as a 1-dimensional simplicial
complex. Each 0-simplex and 1-simplex of a graph are called a vertex and an
edge, respectively. The complete graph K, is a graph with n vertices such that
any two vertices are joined by one edge. We call an embedding of a graph G
into R® a spatial embedding of G and the image of the embedding a spatial
graph. Especially, a linear embedding of G is a spatial embedding such that
the image of each edge is a line segment. Two spatial embeddings G; and G
of the same graph G are said to be equivalent if there exists a homeomorphism
h:R?® — R3 such that h(G;) = Go.

An m-component link is a disjoint union of m simple closed curves in R3.
Especially, a 1-component link is called a knot. The definition of the equivalence
of spatial graphs is also applied to knots and links. A link is said to be trivial
if it is equivalent to a link in a plane of R3. The knot 3; and the link 27 in
Figure 1 are non-trivial. A knot and a link which are equivalent to 3; and 22
are called a trefoil knot and a Hopf link, respectively. If a link &k consists of
finite number of line segments, then we say that k is a polygonal link. The
polygonal index of k, denoted by p(k), is defined to be the minimal number of
line segments to constitute a polygonal link which is equivalent to k.

If a graph G contains a cycle or more than one disjoint cycles as a subgraph,
then a knot or a link exists in any spatial embeddings of G as a subspace. In
[2] Conway and Gordon showed that every spatial embedding of K¢ contains
odd number of non-trivial links and every spatial embedding of K contains
at least one non-trivial knot. Negami generalized Conway-Gordon’s work. He
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proved that given a link k there is a finite number 7(k) such that every linear
embedding of K, with n > (k) contains a link equivalent to & [5]. For example,
r(trefoil knot) = 7 [6].

In this paper we investigate the number of non-trivial knots and links in
linear embeddings of K. If a polygonal knot k is non-trivial, then p(k) > 6.
Furthermore, k is a trefoil knot if p(k) = 6 [1, 3, 5]. It follows that if k is
contained in a linear embedding of Kg, then k is a trefoil knot. Also it’s easy
to prove that the polygonal index is more than b for every 2-component link and
Hopf link is the only non-trivial 2-component link with p = 6, which implies
that every non-trivial link in any linear embedding of K¢ is a Hopf link. The
following theorems are the main results of this paper.

FIGURE 1. 3; and 22

Theorem 1. A linear embedding of Kg can contain at most one trefoil knot.

Theorem 2. A linear embedding of Ke contains a trefoil knot if and only if it
contains three Hopf links.

By combination of Theorems 1, 2 and the result of Conway-Gordon [2], we
have

Corollary 3. The number of Hopf links in any linear embedding of K¢ is either
1 or 3.

Therefore we can conclude that if a linear embedding of Kg contains a trefoil
knot, then only one trefoil knot and three Hopf links exist in the embedding.
Otherwise, the embedding contains only one Hopf link.

The rest of the paper is devoted to the proofs of Theorems 1 and 2. In
Section 2, we investigate the relative positions of line segments in a polygonal
trefoil knot, which are necessary for the proofs in Sections 3 and 4. In Section
5, a generalization of our result is discussed.

2. Polygonal trefoil knots

A set of points of R3 is said to be in general position if no three of its elements
are collinear and no four of them are coplanar. Given a set {z1,z2,...,Z,} of
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points in R® and given &; > 0, there exists a set {y1,¥2,...,%n} of points in
general position such that |z; — y;| < &; for all i [4].

A linear embedding of a graph is determined by the positions of its vertices
in R3. Consider a linear embedding G, of a graph G whose vertex set is, say,
{z1,22,...,2n}. It is clear that there exists d2 > 0 such that if |z; — y;| < 2
for each corresponding vertex y; of another linear embedding Gs of G, then Gy
is equivalent to G3. Note that the aim of this paper is to count the number
of non-trivial knots and links in linear embeddings of K. Therefore we may
assume that the vertex set of any linear spatial graph we consider is in general
position.

Let T be a polygonal trefoil knot consisting of six line segments. We consider
T as a linear embedding of a cycle with 6 vertices and label the vertices by
v1,%2,. ..,V along an orientation of 7. For convenience, let v; and v; denote
the same vertex, if { = j (mod 6). e; ;11 and e;41 ; denote the same line segment
(or the embedded edge) between v; and v;+1. As mentioned in the above, we
assume that the vertex set of 7 is in general position. For each a, a triangle
A, of T is defined to be the triangle which is determined by v,_1,v, and vg41.
IEALNT =e4-1,0Ueq 011, We say that A, is reducible. Otherwise, irreducible.
Note that the line segments of 7 which may penetrate A, are e,42q+3 and
€a+3,a4+4-

Lemma 4. FEvery triangle of T is trreducible.

Proof. Suppose A, isreducible. Then, by replacing €414, €a,a+1 With €41 ¢41
(see Figure 2), we get another trefoil knot consisting of five line segments, which
is contradictory to p(trefoil) = 6. O

Lemma 5. For each a € {1,2,...,6}, A\, is penetrated by only one edge of T .

Proof. If A, is penetrated by both of e,42,44+3 and eg43,0+44, then Ayig is
reducible (See Figure 3). O

Lemma 5 implies that only one of €419 415 and e,43,0+4 can penetrate A,.
By labeling the vertices of 7 in the other direction if necessary, we may assume
that only eq42 443 penetrates A, for some a.

Lemma 6. €145 penetrates Ngy1 and A, qo.
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Proof. Let P be the plane which contains A,, and let E¥ and E~ be the
connected components of R® — P. Since €a+2,0+3 Denetrates A,, we may
assume that vo12 € B and v,43 € E~. Let T be the tetrahedron determined
by A, and v,42, and let T be the union of all half lines each of which starts
at vg42 and passes through a point of A, (See Figure 4).

Note that vgays € T — T. Since €443,0+4 can’t penetrate Ag4q with-
out any intersection with A\,, Lemma 5 implies that only e,y4,45 penetrates
Agt1. Furthermore, €44 4+5 should penetrate A, o because A,y C T and
€a+5,0 C oT*°, 0

Proposition 7. It is possible to label the vertices of T so that

e ¢ 2 penetrates Ay and As,
e e34 penetrates Ng and N,
e e56 penetrates Do and Aj.

Proof. Label the vertices of 7 so that A; is pierced by e3 4. Then, by Lemma
6, we know that es¢ penetrates A, and Az. By applying Lemma 6 to Ag
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triangles of 7 | edges of Kg
AN} 3,4
JAYS €56
Az es.6
JAV €1,2
Ag €1,2
JAV; €34

TABLE 1. Edges of Kg penetrating the triangles of 7

and es g, we know that e; o penetrates Ny and As. Similarly ez 4 penetrates
Ng. ]

3. Proof of theorem 1

In this section we prove Theorem 1. Let Kg be a linear embedding of Kg
which contains a trefoil knot 7. Label the vertices of K¢ along 7 so that 7
satisfies Proposition 7.

We extend the mathematical notations in Section 2. P, will denote the plane
containing A,. E} and E; are the connected components of R® — P,. e; ;
will denote the embedded edge of K¢ between v; and v;.

We observe which embedded edges of K¢ penetrate A, for each a € {1,2,
..., 6}. By Proposition 7, we know that if ¢ is an even number then eq_3 42
(i.e., €q+3,q0+4) Penetrates A,4q. Other possible edges of K¢ piercing Ago are
€a+d,a+5 and €43 qv5. Since €qq4,0+5 C 7, Lemma 5 enables us to exclude it
from the candidates. A4z is pierced by €q45.q, for a + 2 is even. If we assume
Vats € EJfy, then Agys C Ef; U Pay1, which implies vays € Ef,;. So
€a+3,a+5 can not penetrate Ag 1. If a is an odd number, A, is penetrated by
€a+4,0+5- Other possible edges are eq 43,044 and e,13 o45. Since €a43,044 C 7T,
it’s enough to consider eqy3,445. Note that Ay is penetrated by e,12,443. If
vats € E;,, then Ag C E_ ;U Pyy1. Hence vay3 € E ) and eg43,4+5 can
not penetrate A,;1. What we have observed are summarized in Table 1.

Now we consider other triangles. Let A, . be the triangle which is deter-
mined by v, vs and ve, and let P, p . be the plane containing A, .. Since we
are assuming that the vertex set of K is in general position, Ag pc and Py p ¢

are well-defined for every distinct a,b,c € {1,2,...,6}. The connected com-
ponents of R3 — P, ;. are denoted by EJ, . and E_, .. It would be observed

which triangles among {Ag 5|1 < a < b < 5} are peflétrated by the embedded
edges of Kg.

It follows from Table 1 that e5 ¢ and e3 4 penetrate A 23 and Ag 13, re-
spectively. Assume that vz € Eét 1,2 and v4 € Eg; 5. The interior of ;2 is
contained in a component C of R®> — (Ps,1,3 U Ps2,3), which implies that the
interiors of Ag 1,2 and Ay 2 3 are subsets of C. Hence {v4,v5} C C. The other
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FIGURE 5

vertices are in C (See Figure 5). Because A\g 1,3 and Qg 2,3 are contained in
0C, they are not penetrated by any edge of Kg. Note that vy is the only vertex
in E(; 1,2- Therefore Ag,1,4 and Ag 24 are not penetrated. Similarly, we also
know that Ag 35 is not penetrated.

The remaining triangles to check are Ag 34 and Ag 25. Let T be the tetra-
hedron which is determined by Ag 1 2 and vs. If Ag 3.4 is penetrated, the inter-
section point should be in T'N Ag 3 4. But it can’t happen because e; » C 0T
and (e1,5 Uezs) NT = {v1,v2}. For Ngay5, the edges to consider are e 3,
e1,4 and ez 4. Since e13 C 0C and Ag 25 NOC = €2, €1,3 can’t meet Ng 2 5.
Also ey 4 can be excluded from our consideration because e1.4 C Ps 12U Eg1a-
Suppose e3 4 penetrates Ag 25. Then Ag 25N Ag 34 is a line segment between
vy and an interior point = of e3 4. On the other hand, considering that esg
penetrates Ny 34, Ng 2,5 M Ao 34 is a line segment between v, and an interior
point y of e5g. It follows that # = y and e34 Nese 7 0. Hence we get a
contradiction.

From the observation in the above, we can conclude that among the ten
triangles containing vg, only Ag 12, Ag 1,5 and Ag 4,5 are penetrated. To com-
plete the proof, we check whether K¢ contains any trefoil knot other than 7.
A knot with 6 edges in K¢ can be represented by a sequence of the vertices.
For example, according to our labeling, 7 can be expressed as

(123456).

Suppose there exists another trefoil knot 7/ in K. By Lemma 5, every triangle
determined by three consecutive vertices along an orientation of 7’ should be
irreducible. Hence 7" corresponds to one of the following sequences.

Sy =(-612--) Sp={--615---) S5={(--645---)
Sy=(-621--) Sg=1{(-651---) Sg={--654---)
Sy =(--261---) Sg=1(--561---) Sg={--564-).
Since S7 dose not contain ej 2, A4 is reducible in S7. Similarly Aa 34
and A; g3 are also reducible in S; and Ss, respectively. Therefore, the three
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sequences are excluded from our consideration. Now we try to guess the re-
maining parts of the five sequences in left direction. For example, only the
number 5 can be put into the left of the number 6 in S; because A5 1 and
Ag,1,2 are the only irreducible triangles which contain both vs and v;. On the
other hand, S4 can’t be extended because Ag 2,1 is the only irreducible triangle
which contains both vg and vy. In this way, we get the five possible sequences
in the below.

(-+-5612---) (---4651---) (---4561---) (---1654---) (---1564--.).
By filling the remaining parts completely, we get only three possible se-
quences.
(435612)(X) (324651)(X) (345612)(0) (321654)(0) (315642)(X)
(345612)(0) (234651)(X) (245613)(X) (231654)(X) (215643)(X).

All of the three sequences correspond to 7. Therefore, 7 is the only non-
trivial knot in Kg.

Remark. From the proof we also know that if g contains a trefoil knot, then
it contains only three Hopf links.

4. Proof of Theorem 2

We give a proof of Theorem 2. By the remark at the end of section 3, we
only have to prove the “if” part of the theorem. Suppose that Kg contains
three Hopf links. Then, without loss of generality, we may accept the following
assumptions. The situation is depicted in Figure 6.

(1) the vertex set of K¢ is in general position.
(2) 8A1,2,3 U 8A4’5’6 is a Hopf link.
(3) es5 penetrates Aq 5 3.
(4) e1,3 penetrates Ay 5 6.
(5) va,v6 € Ef g, and vs € By 5.
(6) ve € Ef54 and va,v5 € By 34
Let T be the tetrahedron determined by wvi1,wvs,vs,v4, and let T°° be the
union of all half lines starting at vs and intersecting Aq 3.

Claim. T N €56 = 0 and Int(T) n (61,6 U 63,6) = 0.

Proof of the Claim. Since 84\ 23 is a component of a Hopf link, es ¢ doesn’t
penetrate A; 33 and hence es 6 N T = {vs}. Considering that T C T and
TCP34U El’ 3,40 We know that the statement holds. O

We will say that a triangle Ay p . is reducible if Int(Agpc) N Ks = 0. We
proceed the proof of the theorem by considering two cases.

Case 1: ez doesn’t penetrate A 34. We observe the triangles containing
vy as a vertex. In this case, es g is the only possible edge which may penetrate
Ay 34 because eas C P 3o UEy 3 5. Therefore, by the claim in the above, Ay 34
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is reducible. Since Aj 25, A135 C P 32U Ef 3,25 they are reducible. Similarly
Ai136 and Aq 46 are reducible. Considering T Nes¢ = @ and Int(Aq24) C
ET34N E1+‘372, we know that Ay 5 4 is also reducible.

Let z = P1’3,2 N €5,6 and Yy = A173,2 N €4,5- Then A1’5,6 = A175,z U AI,I,G'
Note that e; 3N Ays6 is a point in the line segment between z and y. So
xT € Ef:374. Hence Az 16 C P13 U E1+’3’4 and Ay, C P32 U Ej3,, which
implies that A; 56 is reducible. For Aj 45, the possible edges to penetrate
are ez, €33 and egg. eg3 is removed from the candidates by the fact that
A1as C T, e3¢ is also excluded because e3¢ C P34 U E1+,3,4. By the
hypothesis of the case 1, e26 N T = {v2}. Considering that Ay 4, C T and
D145 = NjgyU Ny s 1, we know that ez ¢ doesn’t penetrate Ay 4 5.

To summarize what we have observed, among the triangles containing v as
a vertex, at most two triangles are components of Hopf links in Kg. Therefore,
the case 1 can’t happen.

Case 2: eq ¢ penetrates A1 3 4. We choose an orthogonal coordinate system
of R3 so that the third axis has the same direction with w03 . Let p: R3 — R2
be a projection map defined by p(z,y,2) = (z,y) with respect to the chosen
coordinate system. The piecewise linear curves in the left hand side of Figure 7
show the images of the cycles, (132654} and (126543), under p. After perturbing
the cycles in R? slightly enough and expressing the relative heights of double
points with respect to the third axis, except for p(es5) N p(e26), we obtain
the diagrams in the right hand side of Figure 7. If ey 5 passes over ez¢ at
p(es,s)Np(es,e), then (132654) is a trefoil knot. Otherwise, (126543) is a trefoil
knot. Therefore, Kg contains a trefoil knot.

5. Knots in linear embeddings of K,

Let ¢(K,,) be the number of knots with polygonal index n in a linear embed-
ding K, of the complete graph K,,. Define M (n) and m(n) to be the maximum
and the minimum of ¢(X,,) over all linear embeddings of K,,. For n = 3,4,5
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these numbers are meaningless because there is no non-trivial knot with polyg-
onal index n. In Section 3 we proved that M(6) = 1. As a further study, we

may try to find M(n) and m(n) for n > 7.
Let V,, be a set of points in R? such that

Vo= {v|vi = (4,4%,4%),i=0,1,2,...,n— 1} .

Since V;, is in general position, it gives a linear embedding of K,,. Consider
two line segments e;, ;, and e;, j,. If i1 < i2 < j1 < j2, then

‘p(eihh) mp(eiz,jz) l =1, where p(x7y’z> = (x,y) -

Note that e;, ;, passes under e;, j, at the double point, as seen in Figure 8.
Now suppose that the embedding determined by V,, contains a knot k with
polygonal index n. Then, for some ¢ and j, e;o and eg; are line segments of
k. Because p(vg) is the leftmost point among p(1,,), the triangle determined
by the two consecutive line segments is reducible, which is contradictory to
p(k) = n. It follows that m(n) = 0 for n > 6.

The Figure-eight knot in Figure 9 is the only knot with polygonal index 7
[1]. So, to find M(7), we have only to find the maximal number of Figure-eight
knots in linear embeddings of K7. For an arbitrary n, it is hard to count the
number of specific knots with polygonal index n in linear embeddings of K,
because the polygonal indices are known only for relatively small number of
knots among all knot equivalence classes.
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FIGURE 8

N

FicUre 9. Figure-eight knot
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