• Title/Summary/Keyword: knot invariant

Search Result 17, Processing Time 0.027 seconds

THE SECONDARY UPSILON FUNCTION OF L-SPACE KNOTS IS A CONCAVE CONJUGATE

  • Masakazu Teragaito
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.469-477
    • /
    • 2024
  • For a knot in the 3-sphere, the Upsilon invariant is a piecewise linear function defined on the interval [0, 2]. It is known that this invariant of an L-space knot is the Legendre-Fenchel transform (or, convex conjugate) of a certain gap function derived from the Alexander polynomial. To recover an information lost in the Upsilon invariant, Kim and Livingston introduced the secondary Upsilon invariant. In this note, we prove that the secondary Upsilon invariant of an L-space knot is a concave conjugate of a restricted gap function. Also, a similar argument gives an alternative proof of the above fact that the Upsilon invariant of an L-space knot is a convex conjugate of a gap function.

RASMUSSEN INVARIANTS OF SOME 4-STRAND PRETZEL KNOTS

  • KIM, SE-GOO;YEON, MI JEONG
    • Honam Mathematical Journal
    • /
    • v.37 no.2
    • /
    • pp.235-244
    • /
    • 2015
  • It is known that there is an infinite family of general pretzel knots, each of which has Rasmussen s-invariant equal to the negative value of its signature invariant. For an instance, homologically ${\sigma}$-thin knots have this property. In contrast, we find an infinite family of 4-strand pretzel knots whose Rasmussen invariants are not equal to the negative values of signature invariants.

Delta Moves and Arrow Polynomials of Virtual Knots

  • Jeong, Myeong-Ju;Park, Chan-Young
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.183-202
    • /
    • 2018
  • ${\Delta}-moves$ are closely related with a Vassiliev invariant of degree 2. For classical knots, M. Okada showed that the second coefficients of the Conway polynomials of two knots differ by 1 if the two knots are related by a single ${\Delta}-move$. The first author extended the Okada's result for virtual knots by using a Vassiliev invariant of virtual knots of type 2 which is induced from the Kauffman polynomial of a virtual knot. The arrow polynomial is a generalization of the Kauffman polynomial. We will generalize this result by using Vassiliev invariants of type 2 induced from the arrow polynomial of a virtual knot and give a lower bound for the number of ${\Delta}-moves$ transforming $K_1$ to $K_2$ if two virtual knots $K_1$ and $K_2$ are related by a finite sequence of ${\Delta}-moves$.

Local Moves and Gordian Complexes, II

  • Nakanishi, Yasutaka
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.329-334
    • /
    • 2007
  • By the works of Levine [2] and Rolfsen [5], [6], it is known that a local move called a crossing-change is strongly related to the Alexander invariant. In this note, we will consider to what degree the relationship is strong. Let K be a knot, and $K^{\times}$ the set of knots obtained from a knot K by a single crossing-change. Let MK be the Alexander invariant of a knot K, and MK the set of the Alexander invariants $\{MK\}_{K{\in}\mathcal{K}}$ for a set of knots $\mathcal{K}$. Our main result is the following: If both $K_1$ and $K_2$ are knots with unknotting number one, then $MK_1=MK_2$ implies $MK_1^{\times}=MK_2^{\times}$. On the other hand, there exists a pair of knots $K_1$ and $K_2$ such that $MK_1=MK_2$ and $MK_1^{\times}{\neq}MK_2^{\times}$. In other words, the Gordian complex is not homogeneous with respect to Alexander invariants.

  • PDF

On Crossing Changes for Surface-Knots

  • Al Kharusi, Amal;Yashiro, Tsukasa
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1247-1257
    • /
    • 2016
  • In this paper, we discuss the crossing change operation along exchangeable double curves of a surface-knot diagram. We show that under certain condition, a finite sequence of Roseman moves preserves the property of those exchangeable double curves. As an application for this result, we also define a numerical invariant for a set of surface-knots called du-exchangeable set.

A RECURSIVE FORMULA FOR THE KHOVANOV COHOMOLOGY OF KANENOBU KNOTS

  • Lei, Fengchun;Zhang, Meili
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Kanenobu has given infinite families of knots with the same HOMFLY polynomial invariant but distinct Alexander module structure. In this paper, we give a recursive formula for the Khovanov cohomology of all Kanenobu knots K(p, q), where p and q are integers. The result implies that the rank of the Khovanov cohomology of K(p, q) is an invariant of p + q. Our computation uses only the basic long exact sequence in knot homology and some results on homologically thin knots.

The Forbidden Number of a Knot

  • CRANS, ALISSA S.;MELLOR, BLAKE;GANZELL, SANDY
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.485-506
    • /
    • 2015
  • Every classical or virtual knot is equivalent to the unknot via a sequence of extended Reidemeister moves and the so-called forbidden moves. The minimum number of forbidden moves necessary to unknot a given knot is an invariant we call the forbidden number. We relate the forbidden number to several known invariants, and calculate bounds for some classes of virtual knots.

AN ELEMENTARY PROOF OF THE EFFECT OF 3-MOVE ON THE JONES POLYNOMIAL

  • Cho, Seobum;Kim, Soojeong
    • The Pure and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.95-113
    • /
    • 2018
  • A mathematical knot is an embedded circle in ${\mathbb{R}}^3$. A fundamental problem in knot theory is classifying knots up to its numbers of crossing points. Knots are often distinguished by using a knot invariant, a quantity which is the same for equivalent knots. Knot polynomials are one of well known knot invariants. In 2006, J. Przytycki showed the effects of a n - move (a local change in a knot diagram) on several knot polynomials. In this paper, the authors review about knot polynomials, especially Jones polynomial, and give an alternative proof to a part of the Przytychi's result for the case n = 3 on the Jones polynomial.

RNA FOLDINGS AND STUCK KNOTS

  • Jose Ceniceros;Mohamed Elhamdadi;Josef Komissar;Hitakshi Lahrani
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.223-245
    • /
    • 2024
  • We study RNA foldings and investigate their topology using a combination of knot theory and embedded rigid vertex graphs. Knot theory has been helpful in modeling biomolecules, but classical knots emphasize a biomolecule's entanglement while ignoring their intrachain interactions. We remedy this by using stuck knots and links, which provide a way to emphasize both their entanglement and intrachain interactions. We first give a generating set of the oriented stuck Reidemeister moves for oriented stuck links. We then introduce an algebraic structure to axiomatize the oriented stuck Reidemeister moves. Using this algebraic structure, we define a coloring counting invariant of stuck links and provide explicit computations of the invariant. Lastly, we compute the counting invariant for arc diagrams of RNA foldings through the use of stuck link diagrams.