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A RECURSIVE FORMULA FOR THE KHOVANOV

COHOMOLOGY OF KANENOBU KNOTS

Fengchun Lei† and Meili Zhang

Abstract. Kanenobu has given infinite families of knots with the same
HOMFLY polynomial invariant but distinct Alexander module structure.
In this paper, we give a recursive formula for the Khovanov cohomology of
all Kanenobu knots K(p, q), where p and q are integers. The result implies
that the rank of the Khovanov cohomology of K(p, q) is an invariant of
p + q. Our computation uses only the basic long exact sequence in knot
homology and some results on homologically thin knots.

1. Introduction

In recent years, there has been tremendous interest in developing Khovanov
cohomology theory [9]. One of the main advantages of the theory is that its
definition is combinatorial and there is a straightforward algorithm for com-
puting Khovanov cohomology groups of links. Consequently, there are various
computer programs that efficiently calculate them with 50 crossings and more
(See [3, 22]).

Since then, some results about the cohomology groups of larger classes of
links have been obtained. E. S. Lee [12] pointed out that ranks of the cohomol-
ogy groups of “alternating links” were determined by their Jones polynomial
and signature. The notion of “quasi-alternating links” was introduced by P.
Ozsváth and Z. Szabó in [18]. Furthermore, it was shown quasi-alternating
links were homologically thin for both Khovanov cohomology and knot Floer
homology in [15].

J. Greene [5] exhibited the first examples of links which were homologi-
cally thin but “not quasi-alternating”, including the 11n50 knot. L. Watson
[25, 26] pointed out the knot 11n50 occurred as K(0, 3) in Kanenobu knots
whose HOMFLY polynomial depended only on p + q. Amongst them, the
knot K(1, 2) = K(2, 1) = 11n132 was quasi-alternating. However, J. Greene
conjectured that this is the only knot in this family that is quasi-alternating
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(See Conjecture 3.1 of [5]). Later K. Qazaqzeh and N. Chbili [19] showed
that there were only finite quasi-alternating links in the family of Kanenobu
knots. In this sense, the Kanenobu knots can be seen as the “most non-quasi-
alternating” class of knots (See [5, 6]). However, a formula for calculating
cohomology groups of general Kanenobu knots remains unknown.

Let K(p, q) be the Kanenobu knots of type (p, q). For simplicity, we denote
the Khovanov cohomology groups, odd Khovanov cohomology groups [16] by
H(K(p, q)) and Hodd(K(p, q)) respectively. In this paper, we will concentrate
on the cohomology groups with coefficients in F2 (the field of two elements).

In [5], the following formula was obtained by J. Greene.

Lemma 1.1 ([5, Theorem 7]). For all p, q ∈ Z,

Hi,j((K(p, q);Z) = Hi,j(K(p+ 1, q − 1);Z).

In Proposition 3.6 of the present paper, we first generalize this formula to
the case with coefficients F2. Then in Theorem 3.8, we can give a calculating
formula of Hi,j((K(p, 0)). Combining with Theorem 3.15, we give a recursive
formula for the Khovanov cohomology of Kanenobu knots K(p, q).

The organization of the coming sections is as follows. In Section 2, we review
some fundamental facts on Kanenobu knots, and give a brief summary of the
Khovanov cohomology. We show the main theorems about the calculation for
Hi,j(K(p, q)) and give some corollaries in Section 3.

2. Preliminaries

2.1. The Kanenobu knots

The knot shown as in Fig. 1 is called Kanenobu knots K(p, q), where p, q
are the number of half twists.

{ {p q

Figure 1. Kanenobu knots K(p, q).

Kanenobu knots with small crossings are the following knots [8].

K(0, 0) = 41♯41, K(0,−1) = 88, K(1,−1) = 89, K(2,−1) = 10129,
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K(2, 0) = 10137, K(1, 1) = 10155, K(2,−3) = 136714.

Lemma 2.1 ([7]). There exist infinitely many examples in Kanenobu knots

which are ribbon, hyperbolic, fibred, genus 2 and 3-bridge, with the same HOM-

FLY polynomial invariant and, therefore, the same Jones polynomial but dis-

tinct Alexander module structure.

Remark 2.2. Two Kanenobu knots K(p1, q1) and K(p2, q2) are in the same
subfamily of Kanenobu knots mentioned in Lemma 2.1 if and only if they
satisfy the following conditions.

(1) p1 + q1 = p2 + q2,
(2) |p1 − q1| 6= |p2 − q2|,
(3) (p, q) 6= (0, 0).

We summarize some main properties of Kanenobu knots as follows.

Lemma 2.3 ([7], [8]).

(1) K(p1, q1) ∼= K(p2, q2) if and only if (p1, q1) = (p2, q2) or
(p1, q1) = (q2, p2),

(2) K !(p, q) ∼= K(−p,−q) where K ! denotes the mirror image of K,

(3) K(p, q) is prime except for K(0, 0).

2.2. Khovanov cohomology

Given an oriented link diagramD, Khovanov builds the “cube of resolutions”
from it, where a cube is of all possible 0 and 1 resolutions of the crossing as
shown in Fig. 2.

Figure 2. The resolution 0 and 1 of a crossing

Khovanov constructs a chain complex of bigraded modules C
i,j
(D). We

refer to the i-degree as homological degree and j-degree as quantum degree.
This construction is dependent of the choice of a link diagram. Just as the
Jones polynomial needs a writher correction term, this construction needs an
overall normalization to be a link invariant.

Let x(D) and y(D) be the number of negative crossings and positive crossings

of D respectively. Ci,j(D) = C
i,j
(D)[x(D)]{2x(D) − y(D)}, where [·] and {·}

denote the shift of the cohomological degree and quantum degree respectively.

We denote H
i,j
(D) and Hi,j(D) to be the cohomology group of the complex

C
i,j
(D) and Ci,j(D) respectively. Then

Hi,j(D) = H
i+x(D),j+2x(D)−y(D)

(D).
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Proposition 2.4 ([9, Proposition 9]). Let R = Z[c] denote the ring of poly-

nomials with integral coefficients. The bigraded R-modules H(L) := H(D) will
be an invariant of link L. In addition, the graded Euler characteristic of the

complex C(D) is equal to the Jones polynomial of the link L, that is,

VL(t) = (q + q−1)−1
∑

i,j∈Z

(−1)iqjdimQ(H
i,j(L)⊗Z Q)|q=−t1/2 ,

where VL(t) is the Jones polynomial of L.

We denote D(∗0) and D(∗1) by the diagram obtained by applying the 0-
resolution and the 1-resolution at the crossing of D. It is clear that C(D(∗0))
and C(D(∗1))[−1]{−1} are subcomplexes of C(D) and form a short exact se-
quence.

0 → C(D(∗1))[−1]{−1} → C(D) → C(D(∗0)) → 0.

It induces a long exact sequence on cohomology as follows.

· · · → H
i−1,j

(D(∗0)) → H
i−1,j−1

(D(∗1)) → H
i,j
(D) → H

i,j
(D(∗0))

→ H
i,j−1

(D(∗1)) → · · ·

3. Khovanov cohomology of Kanenobu knots

We denote P (L) to be the graded Poincaré polynomial of Khovanov coho-
mology of the oriented link L, that is,

P (L)(t, q) :=
∑

i,j∈Z

tiqjdimHi,j(L),

where the Poincaré polynomial of the cohomology use coefficients in F2.
The following lemmas will be used in our calculation.

Lemma 3.1 ([23, Theorem 5.2]). For the homologically thin knot L, if its

cohomology is concentrated on diagonals j = s− 1+2i and j = s+1+2i, then
there exists a polynomial P ′(L) such that

P (L) = qs−1(1 + q2)(1 + (1 + tq2)P ′(L),

where P ′(L) is a polynomial in tq2.

Lemma 3.2 ([13, Theorem 1.2 and Theorem 4.3]). For the homologically thin

knot L, the integer s is equal to the signature of L and the polynomial P ′(L)
contains only powers of tq2.

Lemma 3.3 ([13, Theorem 1.4]). If L is the homologically thin knot with

s(L) = 0 and j − 2i = σ(k) ± 1, then

H
x(D),2x(D)−y(D)−1

(D) = H
x(D)+1,2x(D)−y(D)+3

(D)⊕ F2,

H
x(D),2x(D)−y(D)+1

(D) = H
x(D)−1,2x(D)−y(D)−3

(D)⊕ F2,

Hi,j(D) = Hi+1,j+4(D).
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Next, we shall give the calculating formula of Hi,j((K(p, 0)) over F2.
For save further space, we’ve underlined negative numbers 1 := −1 and used

the notation arm to denote the monomial atrqm. We’ve suppressed all “ + ”
signs (See [2]).

Theorem 3.4. Let 41 denote the figure eight knot. The Khovanov cohomology

groups of 41 are given as follows.

Hi,j(41) =







F2,
(i, j) ∈ {(0, 1), (1, 1), (1, 3), (2, 3), (2, 5), (0,−1),

(−1,−1), (−1,−3), (−2,−3), (−2,−5)};
0, otherwise.

Proof. As s(41) = 0, according to Lemmas 3.1 and 3.2, it follows that

P ′(41) = 1
2

4
1
1

2
=

1

q4t2
+ q2t,

P (41) = q−1(1 + q2)[1 + (1 + tq2)(q−4t−2 + q2t)]

= (q−1 + q)(1 + q−4t−2 + q2t+ t−1q−2 + t2q4)

= q−1 + q−5t−2 + qt+ t−1q−3 + t2q3 + q + q−3t−2 + q3t+ t−1q−1

+ t2q5

= t0(q + q−1) + t−1(q−1 + q−3) + t(q + q3) + t2(q3 + q5)

+ t−2(q−3 + q−5)

= t0q1 + t0q−1 + t−1q−1 + t−1q−3 + t1q1 + t1q3 + t2q3 + t2q5

+ t−2q−3 + t−2q−5.

This completes the proof. �

Proposition 3.5. s(K(p, 0)) = 0, where s(L) denotes the Rasmussen s-invari-

ant of L, as is given in [21].

Proof. The Kanenobu knot K(p, 0) is a ribbon knot, so it is a slice knot. The
inequality |s(K)| ≤ 2g∗(K) ([21]), where g∗(K) is the slice genus of the knot
K, thus s(K(p, 0)) = 0. �

In order to describe Khovanov cohomology over a ring R in terms of integral
Khovanov cohomology, we use the universal coefficient theorem in homological
algebra.

Since C(D,R) = C(D,Z) ⊗Z R, the universal coefficient theorem tells us
that there is a short exact sequence.

0 → Hi,j(D;Z)⊗Z R → Hi,j(D;R) → Tor(Hi−1,j(D;Z), R).

Therefore, Hi,j(D;R) = Hi,j(D;Z)⊗Z R⊕ Tor(Hi−1,j(D;Z), R).

Proposition 3.6. For any p, q ∈ Z, then

Hi,j(K(p, q);F2) = Hi,j(K(p− 1, q + 1);F2).
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Proof. Consider R = F2 and D = K(p, q). According to Lemma 1.1 and the
universal coefficient theorem, the proof is trivial. �

Theorem 3.7. The khovanov cohomology groups of the Kanenobu knot K(0, 0)
are given by the following.

Hi,j(K(0, 0)) =































F ⊕5
2 ,

F ⊕4
2 ,

F ⊕3
2 ,

F ⊕2
2 ,

F2,

0,

(i, j) = {(0, 1), (0,−1)};
(i, j) = {(1, 1), (1, 3), (−1,−1), (−1,−3)};
(i, j) = {(2, 3), (2, 5), (−2,−3), (−2,−5)};
(i, j) = {(3, 5), (3, 7), (−3,−5), (−3,−7)};
(i, j) = {(4, 7), (4, 9), (−4,−7), (−4,−9)};
otherwise.

Proof. SinceK(0, 0) = 41♯41, it is a homologically thin knot andK(1,−1) = 89,
by Proposition 3.6, it follows that

Hi,j(K(0, 0)) = Hi,j(K(1,−1)) = Hi,j(89).

By Lemmas 3.1, 3.2 and s(89) = 0, we obtain

P ′(89) = 1
4

8
1
3

6
2
2

4
2
1

2
2002

1
21

2
41

3
6

=
1

q8t4
+

1

q6t3
+

2

q4t2
+

2

q2t1
+ 2 + 2q2t+ q4t2 + q6t3,

P (K(0, 0)) = q−1(1 + q2)[1 + (1 + tq2)P ′(89)]

= tq−1 + q−9t−4 + q−7t−3 + 2q−5t−2 + 2t−1q−3 + 2q−1 + 2qt

+ q3t2 + q5t3 + t−3q−7 + t−2q−5 + 2q−3t−1 + 2q−1 + 2qt

+ 2t2q3 + t3q5 + t4q7 + q−7t−4 + q−5t−3 + 2t−12q−3 + 2t−1q−1

+ 5q + 2q3t+ t2q5 + q7t3 + t−3q−5) + t−2q−3 + 2q−1t−1 + 2q

+ 2tq3 + 2t2q5 + t3q7 + t4q9 = 5tq−1 + q−9t−4 + 2q−7t−3

+ 2q−5t−2 + 2t−3q−5 + 4t−1q−3 + 2q−1 + 4qt+ 3q3t2 + 2q5t3

= 4t3q7 + t4q7 + 3t−2q−3 + 4q−1t−1 + 5q1 + 4t1q3 + 3t2q5.

We have thus proved the theorem. �

Theorem 3.8. The Kanenobu knot K(p, 0) for a negative integer p is homo-

logically thin over F2 and its Khovanov cohomology groups are given as follows.

Hi,j(K(p, 0)) =























H−p,−2p+1(K(0, 0))⊕ F2, {(i, j) = (0, 1)};
H−p,−2p−1(K(0, 0))⊕ F2, {(i, j) = (0,−1)};
H−p−1,−2p−3(K(0, 0))⊕ F2, {(i, j) = (−1,−3), p 6= −1};
H−p−1,−2p−1(K(0, 0)), {(i, j) = (−1,−1), p 6= −1};
Hi−p,j−2p(K(0, 0)), otherwise



THE KHOVANOV COHOMOLOGY OF KANENOBU KNOTS 7

and

Hi,j(K(p, 0))⊕ F2 =

{

H0,1(K(0, 0)), {(i, j) = (p, 2p+ 1)};
H0,−1(K(0, 0)), {(i, j) = (p, 2p− 1)}.

To prove the theorem, we need to resolve any crossing of the P -crossings to
obtain D(∗0) and D(∗1). It is clear that D(∗0) is a diagram of the Kanenobu
knot K(p+ 1, 0) and D(∗1) is a diagram of unlink of two components. Since p

is a negative integer, the theorem will be proved by induction on |P |.
Now we will need several lemmas.

Lemma 3.9. K(p, 0) is homologically thin over F2.

Proof. From the induction hypothesis, it follows that K(p + 1, 0) is homo-
logically thin. Therefore, Hi,j(K(p + 1, 0)) is supported in two diagonal lines
j−2i = σ(K(p+1, 0))±1 = ±1. We conclude that the K(p, 0) is homologically
thin as its cohomology is supported in two lines j − 2i = −4± 1. �

Lemma 3.10. Let D(∗1) be a diagram of unlink of two components, its Kho-

vanov cohomology groups are given as follows.

Hi,j(D(∗1)) =







F2,

F2 ⊕ F2,

0,

{(i, j) = (3− p, 4− 2p), (3− p,−2p)};
{(i, j) = (3− p, 2− 2p)};
otherwise.

Proof. Since x(D(∗1)) = 4− (p+ 1) = 3− p and y(D(∗1)) = 4, it follows that

Hi,j(D(∗1)) = H
i+3−p,j+[6−2p−4]

(D(∗1)) = H
i+3−p,j+2−p

(D(∗1)).
Let i+ 3− p = i′, j + 2− p = j′, we have

j′ − 2i′ = j + 2− 2p− 2(i+ 3− p) = j + 2− 2p− 2i− 6 + 2p

= j − 2i− 4 = −4± 1.

It can be easily seen that the cohomology of (D(∗1)) is

H
i,j
(D(∗1)) =







F2,

F2 ⊕ F2,

0,

{(i, j) = (0, 2), (0,−2)};
{(i, j) = (0, 0)};
otherwise.

Then

Hi,j(D(∗1)) =







F2,

F2 ⊕ F2,

0,

{(i, j) = (3− p, 4− 2p), (3− p,−2p)};
{(i, j) = (3− p, 2− 2p)};
otherwise. �

Lemma 3.11. The following formulas are established.

H
4−p,5−2p

(K(p, 0)) = H
4−p,5−2p

(K(p+ 1, 0))⊕ F2,

H
3−p,1−2p

(K(p, 0))⊕ F2 = H
3−p,1−2p

(K(p+ 1, 0)),

H
4−p,1−2p

(K(p, 0)) = 0,

H
3−p,3−2p

(K(p, 0))⊕ F2 = H
3−p,3−2p

(K(p+ 1, 0)),
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H
4−p,3−2p

(K(p, 0)) = H
4−p,3−2p

(K(p+ 1, 0))⊕ F2.

Proof. By the long exact sequence on cohomology

· · · → H
i−1,j

(D ∗ 0) → H
i−1,j−1

(D ∗ 1) → H
i,j
(D) → H

i,j
(D ∗ 0)

→ H
i,j−1

(D ∗ 1) → · · ·

we obtain H
i,j
(K(p, 0)) = H

i,j
(K(p+1, 0)) except in the following three cases:

Case 1. By Lemma 3.10, it follows that H
3−p,4−2p

(D ∗ 1) = F2. Then the
long exact sequence is given as follows.

0 → F2 → H
4−p,5−2p

(K(p, 0)) → H
4−p,5−2p

(K(p+ 1, 0)) → 0.

Therefore, H
4−p,5−2p

(K(p, 0)) = H
4−p,5−2p

(K(p+ 1, 0))⊕ F2.

Case 2. By Lemma 3.10, it follows that H
3−p,−2p

(D ∗ 1) = F2.
Therefore, we obtain the following long exact sequence.

0 → H
3−p,1−2p

(K(p, 0)) → H
3−p,1−2p

(K(p+ 1, 0)) → F2

→ H
4−p,1−2p

(K(p, 0) → 0.

We have two subcases and only the second holds.
Case 2-(1). By Lemma 3.3, it follows that

H
3−p,1−2p

(K(p+ 1, 0)) = H
4−p,5−2p

(K(p+ 1, 0))⊕ F2.

Suppose H
3−p,1−2p

(K(p, 0)) = H
3−p,1−2p

(K(p+ 1, 0)) and

H
4−p,1−2p

(K(p, 0)) = F2, then H
3−p,1−2p

(K(p, 0)) = H
4−p,5−2p

(K(p, 0)).
In the spectral sequence,

0 → H
3−p,1−2p

(K(p, 0)) → H
4−p,5−2p

(K(p, 0)) → 0.

The differential has to be injective and not surjective, since in the E∞ page
one copy of F2 survives at the j grading 1 instead of the j grading −3. This
contradicts the fact that the domain and the codomain have the same dimen-
sion.

Case 2-(2). Consequently, we infer that

H
3−p,1−2p

(K(p, 0))⊕ F2 = H
3−p,1−2p

(K(p+ 1, 0)),

H
4−p,1−2p

(K(p, 0)) = 0.

Case 3. In the following long exact sequence

· · · → H
1−p,−2−2p

(D(∗1)) → H
2−p,−1−2p

(K(p, 0))

→ H
2−p,−1−2p

(K(p+ 1, 0)) → H
2−p,−2−2p

(D(∗1)) → · · ·

by Lemma 3.10, we obtain

H
1−p,−2−2p

(D(∗1)) = H
2−p,−2−2p

(D(∗1)) = 0.



THE KHOVANOV COHOMOLOGY OF KANENOBU KNOTS 9

Therefore,

H
2−p,−1−2p

(K(p, 0)) = H
2−p,−1−2p

(K(p+ 1, 0)).

By Lemma 3.10, it follows that H
3−p,2−2p

(D ∗ 1) = F2 ⊕ F2. Then the long
exact sequence is given as follows.

0 → H
3−p,3−2p

(K(p, 0)) → H
3−p,3−2p

(K(p+ 1, 0)) → F2 ⊕ F2

→ H
4−p,3−2p

(K(p, 0)) → H
4−p,3−2p

(K(p+ 1, 0)) → 0.

As a result of the statement of lemma 3.3, it can be easily seen that

H
3−p,3−2p

(K(p+ 1, 0)) = H
2−p,−1−2p

(K(p+ 1, 0))⊕ F2,

H
4−p,3−2p

(K(p, 0)) = H
5−p,7−2p

(K(p, 0))⊕ F2,

H
4−p,5−2p

(K(p, 0)) = H
3−p,1−2p

(K(p, 0))⊕ F2.

Therefore, we obtain that

H
3−p,3−2p

(K(p, 0))⊕ F2 = H
i+(4−p),j+(4−2p)

(K(p, 0))⊕ F2

= H−1,−1(K(p, 0)) = H−2,−5(K(p, 0))⊕ F2

= H
2−p,−1−2p

(K(p, 0))⊕ F2

= H
2−p,−1−2p

(K(p+ 1, 0))⊕ F2

= H
3−p,3−2p

(K(p+ 1, 0))

and H
4−p,3−2p

(K(p, 0)) = H
4−p,3−2p

(K(p+ 1, 0))⊕ F2. �

It can be easily seen that x(K(0, 0)) = 4, y(K(0, 0)) = 4, 2x(K(0, 0)) −
y(K(0, 0)) = 4; x(K(p, 0)) = 4− p, y(K(p, 0)) = 4, 2x(K(p, 0))− y(K(p, 0)) =
4−2p; x(K(p+1, 0)) = 3−p, y(K(p+1, 0)) = 4, 2x(K(p+1, 0)−y(K(p+1, 0)) =
2− 2p.

These results will be used in the following lemmas.

Lemma 3.12.

H0,±1(K(p, 0)) = H±1,±3(K(p, 0))⊕ F2,

Hi,j(K(p, 0)) = Hi+1,j+4(K(p, 0)), (i 6= 0).

Proof. By Lemma 3.3, it follows that

H0,−1(K(p, 0)) = H
x(K(p,0)),2x(K(p,0))−y(K(p,0))−1

(K(p, 0))

= H
x(K(p,0))+1,2x(K(p,0))−y(K(p,0))+3

(K(p, 0))⊕ F2

= H1,3(K(p, 0))⊕ F2.
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H0,1(K(p, 0)) = H
x(K(p,0)),2x(K(p,0))−y(K(p,0))+1

(K(p, 0))

= H
x(K(p,0))−1,2x(K(p,0))−y(K(p,0))−3

(K(p, 0))⊕ F2

= H−1,−3(K(p, 0))⊕ F2.

Therefore,

H0,±1(K(p, 0)) = H±1,±3(K(p, 0))⊕ F2,

Hi,j(K(p, 0)) = Hi+1,j+4(K(p, 0)), (i 6= 0). �

Let us now finish the proof of Theorem 3.8. Thus we shall give the calculating
formula of Hi,j((K(p, q)) over F2.

Proof. By Lemma 3.11, we will prove this in eight cases.
(a) In the following long exact sequence

· · · → H
3−p,4−2p

(D(∗1)) → H
4−p,5−2p

(K(p+ 1, 0))

→ H
4−p,5−2p

(K(p+ 2, 0)) → H
3−p,5−2p

(D(∗1)) → · · ·

by Lemma 3.10, we have

H
3−p,4−2p

(D(∗1)) = H
3−p,5−2p

(D(∗1) = 0.

Then H
4−p,5−2p

(K(p+ 1, 0)) = H
4−p,5−2p

(K(p+ 2, 0)). Therefore,

H0,1(K(p, 0)) = H
4−p,5−2p

(K(p, 0)) = H
4−p,5−2p

(K(p+ 1, 0))⊕ F2

= H
4−p,5−2p

(K(p+ 2, 0))⊕ F2 = · · ·

= H
4−p,5−2p

(K(0, 0))⊕ F2 = Hi+4,j+4(K(0, 0))⊕ F2

= H−p,1−2p(K(0, 0))⊕ F2.

(b) In the following long exact sequence

· · · → H
3−p,2−2p

(D(∗1)) → H
4−p,3−2p

(K(p+ 1, 0))

→ H
4−p,3−2p

(K(p+ 2, 0)) → H
5−p,3−2p

(D(∗1)) → · · ·

by Lemma 3.10, we have

H
3−p,2−2p

(D(∗1)) = H
5−p,3−2p

(D(∗1)) = 0.

Therefore, H
4−p,3−2p

(K(p+ 1, 0)) = H
4−p,3−2p

(K(p+ 2, 0)). Thus

H0,−1(K(p, 0)) = H
4−p,3−2p

(K(p, 0)) = H
4−p,3−2p

(K(p+ 1, 0))⊕ F2

= H
4−p,3−2p

(K(p+ 2, 0))⊕ F2

= · · · = H
4−p,3−2p

(K(0, 0))⊕ F2

= Hi+4,j+4(K(0, 0))⊕ F2 = H−p,−1−2p(K(0, 0))⊕ F2.
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(c) By Lemma 3.3, it follows that

H0,1(K(0, 0)) = H
i+4,j+4

(K(0, 0)) = H
4,5

(K(0, 0))

= H
3,1

(K(0, 0))⊕ F2 = H
3,1

(K(p, 0))⊕ F2

= Hp−1,2p−3(K(p, 0))⊕ F2 = Hp,2p+1(K(p, 0))⊕ F2.

(d) By Lemma 3.3, it follows that

H0,−1(K(0, 0)) = H
i+4,j+4

(K(0, 0)) = H
4,3

(K(0, 0))

= H
5,7

(K(p, 0))⊕ F2 = Hp+1,2p+3(K(p, 0))⊕ F2

= Hp,2p−1(K(p, 0))⊕ F2.

(e) If p 6= −1, by Lemma 3.11, we obtain that

H−1,−1(K(p, 0)) = H
3−p,3−2p

(K(p, 0)) = H
3−p,3−2p

(K(p+ 1, 0)) = · · ·

= H
3−p,3−2p

(K(0, 0)) = H4+i,j+4(K(0, 0))

= H1−p,−2p−1(K(0, 0)).

(f) If p 6= −1, by Lemma 3.11, we obtain that

H−1,−3(K(p, 0))⊕ F2 = H
3−p,1−2p

(K(p, 0))⊕ F2

= H
3−p,1−2p

(K(p+ 1, 0))

= · · · = H
3−p,1−2p

(K(0, 0))

= H4+i,j+4(K(0, 0)) = H−1−p,−2p−3(K(0, 0)).

(g) If i 6= 0, we obtain that

Hi,j(K(p, 0)) = H
i+4−p,j+4−2p

(K(p, 0)) = H
(i−p)+4,(j−2p)+4

(K(p+ 1, 0))

= · · · = H
(i−p)+4,(j−2p)+4

(K(0, 0)) = Hi−p,j−2p(K(0, 0)).

The proof is completed. �

Lemma 3.13 ([9, Corollary 11]). For an oriented link L and integers i, j, there

are equalities of isomorphism classes of abelian groups.

Hi,j(L!;Z)⊗Q = H−i,−j(L;Z)⊗Q,

Tor(Hi,j(L!;Z)) = Tor(H1−i,−j(L;Z))

where L! denotes the mirror image of L.

By the universal coefficient theorem, Lemmas 2.3 and 3.13, we have the
following corollary.

Corollary 3.14. For a positive integer p, the Kanenobu knot K(p, 0) is ho-

mologically thin over F2 and its Khovanov cohomology groups are given by

Hi,j(K !(p, 0)) = H−i,−j(K(−p, 0)).
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We now come to a position to prove the following theorem.

Theorem 3.15. For any p, q ∈ Z, we have

Hi,j(K(p, q)) = Hi,j(K(p+ q, 0)).

Proof. We proceed to prove this theorem in two steps.
First, p < 0, |p| > q, that is, p+ q < 0.
Let D1(∗1), D2(∗1) be the unlink of the two components obtained by re-

solving one of the p-th and (p+ q)-th crossings in the K(p, q) and K(p+ q, 0)

respectively. We obtain H
i,j
(D1(∗1)) = H

i,j
(D2(∗1)).

Since x(K(p, q)) = x(K(p+ q, 0)) and y(K(p, q)) = y(K(p+ q, 0)), x(K(p+
1, q)) = x(K(p + q + 1, 0)) and y(K(p + 1, q)) = y(K(p + q + 1, 0)), it is

sufficient to show that H
i,j
(K(p, q)) = H

i,j
(K(p + q, 0)). In fact, the long

exact sequences on cohomology for K(p, q) and K(p+ q, 0) are isomorphic, as
seen in the following commutative diagram using the five lemma.

· · · → H
i−1,j

(K(p+ 1, q)) → H
i−1,j−1

(D1(∗1)) → H
i,j
(K(p, q))

→ H
i,j
(K(p+ 1, q)) → H

i,j−1
(D1(∗1)) → · · ·

· · · → H
i−1,j

(K(p+ q + 1, 0)) → H
i−1,j−1

(D2(∗1)) → H
i,j
(K(p+ q, 0))

→ H
i,j
(K(p+ q + 1, 0)) → H

i,j−1
(D2(∗1)) → · · ·

where

H
i−1,j

(K(p+ 1, q)) = H
i−1,j

(K(p+ q + 1, 0)),

H
i,j
(K(p+ 1, q)) = H

i,j
(K(p+ q + 1, 0)),

H
i−1,j−1

(D1(∗1)) = H
i−1,j−1

(D2(∗1)),

H
i,j−1

(D1(∗1)) = H
i,j−1

(D2(∗1)).

Next, p+ q > 0. It follows from Corollary 3.14 that

Hi,j(K(p+ q, 0)) = H−i,−j(K !(−p− q, 0)) = Hi,j(K(p, q)). �

As an immediate consequence, we obtain the following corollary.

Corollary 3.16. For any p, q ∈ Z, we have

Hi,j(K(p, q)) = Hi,j(K(r, s)) whenever p+ q = r + s.

Remark 3.17. The ranks of the free parts and the torsion parts of the coho-
mology groups of K(p, q) are dependent on p+ q. The type of torsion that can
occur in these groups is limited to the type of torsion that occurs in K(0, 0)
since no new torsion is generated as p, q increases. Therefore the rank of the
Khovanov cohomology of K(p, q) is an invariant of p+ q.

Note that Hodd satisfies the same skein exact sequence as above, we shall
adopt the same procedure as in the proof of Theorem 3.8.
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Theorem 3.18. For any p, q ∈ Z, we have

Hodd(K(p, q)) = Hodd(K(p+ q, 0)).

Similar to the reasoning Corollary 3.16, we have the following corollary.

Corollary 3.19. For any p, q ∈ Z, we have

Hodd(K(p, q)) = Hodd(K(r, s)) whenever p+ q = r + s.

Remark 3.20. By combining Theorems 3.8 and 3.15, we have obtained a calcu-
lating formula for the Khovanov cohomology over F2 for any Kanenobu knots.
It is natural to wonder what the formulas of the Khovanov-Rozansky homology
and the Heegaard Floer homology of Kanenobu knots are. This might worth
further study.

It was claimed in [10, 11] that Khovanov-Rozansky homology, HKRN , is a
categorification of HOMFLY polynomial. As shown in [14], A. Lobb showed
the following fact:

HKRN(K(p, q)) = HKRN (K(p+ 2, q − 2)) for all p, q ∈ Z.

Similar to the method used in this paper, by iterating the above formula, we can
see that we only need to consider the parity of q to calculate HKRN(K(p, 0))
and HKRN (K(p, 1)). Then how to calculate these cohomology? In [4], N.
Carqueville and D. Murfet presented the first method to directly compute
HKRN for arbitrary links. Therefore, it might be feasible to give a formula to
HKRN(K(p, q)).

On the other hand, the Heegaard Floer homology, ĤFk, was introduced
in [17, 20]. It provided a categorification of the Alexander polynomial. As in
[6], J. Greene and L. Watson obtained the skein exact sequence in knot Floer
homology and established the following result:

ĤFK(K(p, q)) = ĤFK(K(p+ 2, q)) = ĤFK(K(p, q + 2)) for all p, q ∈ Z.

Similarly, with the recursive version, it is sufficient to consider the parity of

q to calculate ĤFK(K(p, 0)) and ĤFK(K(p, 1)). In general, it is difficult to

calculate ĤFK explicitly. However, we might refer to [1, 24] for a combinatorial
method for the calculation of the above Heegaard Floer homology.

Acknowledgements. The authors wish to thank the referee very much for
numerous helpful suggestions that have greatly improved the exposition of this
paper.
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[15] C. Manolescu and P. Ozsváth, On the Khovanov and knot Floer homologies of quasi-

alternating links, In proceedings of the 14th Gökova Geometry-Topology Conference,
60–81, International Press, Berlin, 2007.
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