DOI QR코드

DOI QR Code

A NOTE ON STABILIZATION HEIGHTS OF FIBER SURFACES AND THE HOPF INVARIANTS

  • Tagami, Keiji (Department of Fisheries Distribution and Management National Fisheries University)
  • Received : 2020.05.20
  • Accepted : 2021.03.31
  • Published : 2021.09.30

Abstract

In this paper, we focus on the Hopf invariant and give an alternative proof for the unboundedness of stabilization heights of fiber surfaces, which was firstly proved by Baader and Misev.

Keywords

Acknowledgement

We would like to thank Susumu Hirose and Naoyuki Monden for helpful comments on Remark 2.4. The author was supported by JSPS KAKENHI Grant numbers JP16H07230 and JP18K13416.

References

  1. T. Abe and K. Tagami, Fibered knots with the same 0-surgery and the slice-ribbon conjecture, Math. Res. Lett. 23 (2016), no. 2, 303-323. https://doi.org/10.4310/MRL.2016.v23.n2.a1
  2. T. Abe and K. Tagami, Fibered knots with the same 0-surgery and the slice-ribbon conjecture, Math. Res. Lett. 23 (2016), no. 2, 303-323. https://doi.org/10.4310/MRL.2016.v23.n2.a1
  3. S. Baader and F. Misev, On the stabilization height of fiber surfaces in S3, J. Knot Theory Ramifications 27 (2018), no. 3, 1840001, 8 pp. https://doi.org/10.1142/S0218216518400011
  4. J. B. Etnyre and B. Ozbagci, Invariants of contact structures from open books, Trans. Amer. Math. Soc. 360 (2008), no. 6, 3133-3151. https://doi.org/10.1090/S0002-9947-08-04459-0
  5. D. Gabai, The Murasugi sum is a natural geometric operation, in Low-dimensional topology (San Francisco, Calif., 1981), 131-143, Contemp. Math., 20, Amer. Math. Soc., Providence, RI, 1983. https://doi.org/10.1090/conm/020/718138
  6. D. Gabai, The Murasugi sum is a natural geometric operation. II, in Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982), 93-100, Contemp. Math., 44, Amer. Math. Soc., Providence, RI, 1985. https://doi.org/10.1090/conm/044/813105
  7. E. Giroux, Geometrie de contact: de la dimension trois vers les dimensions superieures, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 405-414, Higher Ed. Press, Beijing, 2002.
  8. E. Giroux and N. Goodman, On the stable equivalence of open books in three-manifolds, Geom. Topol. 10 (2006), 97-114. https://doi.org/10.2140/gt.2006.10.97
  9. R. E. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998), no. 2, 619-693. https://doi.org/10.2307/121005
  10. N. D. Goodman, Contact structures and open books, ProQuest LLC, Ann Arbor, MI, 2003.
  11. J. L. Harer, Pencils of curves on 4-manifolds, ProQuest LLC, Ann Arbor, MI, 1979.
  12. J. L. Harer, How to construct all fibered knots and links, Topology 21 (1982), no. 3, 263-280. https://doi.org/10.1016/0040-9383(82)90009-X
  13. J. L. Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983), no. 2, 221-239. https://doi.org/10.1007/BF01389321
  14. M. Hedden, Some remarks on cabling, contact structures, and complex curves, in Proceedings of Gokova Geometry-Topology Conference 2007, 49-59, Gokova Geometry/Topology Conference (GGT), Gokova, 2008.
  15. M. Hedden, Notions of positivity and the Ozsv'ath-Szab'o concordance invariant, J. Knot Theory Ramifications 19 (2010), no. 5, 617-629. https://doi.org/10.1142/S0218216510008017
  16. M. Korkmaz and B. Ozbagci, Minimal number of singular fibers in a Lefschetz fibration, Proc. Amer. Math. Soc. 129 (2001), no. 5, 1545-1549. https://doi.org/10.1090/S0002-9939-00-05676-8
  17. K. Larson and J. Meier, Fibered ribbon disks, J. Knot Theory Ramifications 24 (2015), no. 14, 1550066, 22 pp. https://doi.org/10.1142/S0218216515500662
  18. W. B. R. Lickorish, An Introduction to Knot Theory, Graduate Texts in Mathematics, 175, Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4612-0691-0
  19. P. M. Melvin and H. R. Morton, Fibred knots of genus 2 formed by plumbing Hopf bands, J. London Math. Soc. (2) 34 (1986), no. 1, 159-168. https://doi.org/10.1112/jlms/s2-34.1.159
  20. W. D. Neumann and L. Rudolph, Difference index of vectorfields and the enhanced Milnor number, Topology 29 (1990), no. 1, 83-100. https://doi.org/10.1016/0040-9383(90)90026-G
  21. J. Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (1978), no. 3, 347-350. https://doi.org/10.2307/2043120
  22. L. Rudolph, Isolated critical points of mappings from ℝ4 to ℝ2 and a natural splitting of the Milnor number of a classical fibered link. I, Basic theory; examples, Comment. Math. Helv. 62 (1987), no. 4, 630-645. https://doi.org/10.1007/BF02564467
  23. J. R. Stallings, Constructions of fibred knots and links, in Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, 55-60, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, RI, 1978.
  24. W. P. Thurston and H. E. Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975), 345-347. https://doi.org/10.2307/2040160
  25. R. Yamamoto, Stallings twists which can be realized by plumbing and deplumbing Hopf bands, J. Knot Theory Ramifications 12 (2003), no. 6, 867-876. https://doi.org/10.1142/S0218216503002779
  26. R. Yamamoto, Open books supporting overtwisted contact structures and the Stallings twist, J. Math. Soc. Japan 59 (2007), no. 3, 751-761. http://projecteuclid.org/euclid.jmsj/1191591856 https://doi.org/10.2969/jmsj/05930751