Acknowledgement
We would like to thank Susumu Hirose and Naoyuki Monden for helpful comments on Remark 2.4. The author was supported by JSPS KAKENHI Grant numbers JP16H07230 and JP18K13416.
References
- T. Abe and K. Tagami, Fibered knots with the same 0-surgery and the slice-ribbon conjecture, Math. Res. Lett. 23 (2016), no. 2, 303-323. https://doi.org/10.4310/MRL.2016.v23.n2.a1
- T. Abe and K. Tagami, Fibered knots with the same 0-surgery and the slice-ribbon conjecture, Math. Res. Lett. 23 (2016), no. 2, 303-323. https://doi.org/10.4310/MRL.2016.v23.n2.a1
- S. Baader and F. Misev, On the stabilization height of fiber surfaces in S3, J. Knot Theory Ramifications 27 (2018), no. 3, 1840001, 8 pp. https://doi.org/10.1142/S0218216518400011
- J. B. Etnyre and B. Ozbagci, Invariants of contact structures from open books, Trans. Amer. Math. Soc. 360 (2008), no. 6, 3133-3151. https://doi.org/10.1090/S0002-9947-08-04459-0
- D. Gabai, The Murasugi sum is a natural geometric operation, in Low-dimensional topology (San Francisco, Calif., 1981), 131-143, Contemp. Math., 20, Amer. Math. Soc., Providence, RI, 1983. https://doi.org/10.1090/conm/020/718138
- D. Gabai, The Murasugi sum is a natural geometric operation. II, in Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982), 93-100, Contemp. Math., 44, Amer. Math. Soc., Providence, RI, 1985. https://doi.org/10.1090/conm/044/813105
- E. Giroux, Geometrie de contact: de la dimension trois vers les dimensions superieures, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 405-414, Higher Ed. Press, Beijing, 2002.
- E. Giroux and N. Goodman, On the stable equivalence of open books in three-manifolds, Geom. Topol. 10 (2006), 97-114. https://doi.org/10.2140/gt.2006.10.97
- R. E. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998), no. 2, 619-693. https://doi.org/10.2307/121005
- N. D. Goodman, Contact structures and open books, ProQuest LLC, Ann Arbor, MI, 2003.
- J. L. Harer, Pencils of curves on 4-manifolds, ProQuest LLC, Ann Arbor, MI, 1979.
- J. L. Harer, How to construct all fibered knots and links, Topology 21 (1982), no. 3, 263-280. https://doi.org/10.1016/0040-9383(82)90009-X
- J. L. Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983), no. 2, 221-239. https://doi.org/10.1007/BF01389321
- M. Hedden, Some remarks on cabling, contact structures, and complex curves, in Proceedings of Gokova Geometry-Topology Conference 2007, 49-59, Gokova Geometry/Topology Conference (GGT), Gokova, 2008.
- M. Hedden, Notions of positivity and the Ozsv'ath-Szab'o concordance invariant, J. Knot Theory Ramifications 19 (2010), no. 5, 617-629. https://doi.org/10.1142/S0218216510008017
- M. Korkmaz and B. Ozbagci, Minimal number of singular fibers in a Lefschetz fibration, Proc. Amer. Math. Soc. 129 (2001), no. 5, 1545-1549. https://doi.org/10.1090/S0002-9939-00-05676-8
- K. Larson and J. Meier, Fibered ribbon disks, J. Knot Theory Ramifications 24 (2015), no. 14, 1550066, 22 pp. https://doi.org/10.1142/S0218216515500662
- W. B. R. Lickorish, An Introduction to Knot Theory, Graduate Texts in Mathematics, 175, Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4612-0691-0
- P. M. Melvin and H. R. Morton, Fibred knots of genus 2 formed by plumbing Hopf bands, J. London Math. Soc. (2) 34 (1986), no. 1, 159-168. https://doi.org/10.1112/jlms/s2-34.1.159
- W. D. Neumann and L. Rudolph, Difference index of vectorfields and the enhanced Milnor number, Topology 29 (1990), no. 1, 83-100. https://doi.org/10.1016/0040-9383(90)90026-G
- J. Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (1978), no. 3, 347-350. https://doi.org/10.2307/2043120
- L. Rudolph, Isolated critical points of mappings from ℝ4 to ℝ2 and a natural splitting of the Milnor number of a classical fibered link. I, Basic theory; examples, Comment. Math. Helv. 62 (1987), no. 4, 630-645. https://doi.org/10.1007/BF02564467
- J. R. Stallings, Constructions of fibred knots and links, in Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, 55-60, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, RI, 1978.
- W. P. Thurston and H. E. Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975), 345-347. https://doi.org/10.2307/2040160
- R. Yamamoto, Stallings twists which can be realized by plumbing and deplumbing Hopf bands, J. Knot Theory Ramifications 12 (2003), no. 6, 867-876. https://doi.org/10.1142/S0218216503002779
- R. Yamamoto, Open books supporting overtwisted contact structures and the Stallings twist, J. Math. Soc. Japan 59 (2007), no. 3, 751-761. http://projecteuclid.org/euclid.jmsj/1191591856 https://doi.org/10.2969/jmsj/05930751