Browse > Article
http://dx.doi.org/10.4134/BKMS.b200454

A NOTE ON STABILIZATION HEIGHTS OF FIBER SURFACES AND THE HOPF INVARIANTS  

Tagami, Keiji (Department of Fisheries Distribution and Management National Fisheries University)
Publication Information
Bulletin of the Korean Mathematical Society / v.58, no.5, 2021 , pp. 1097-1107 More about this Journal
Abstract
In this paper, we focus on the Hopf invariant and give an alternative proof for the unboundedness of stabilization heights of fiber surfaces, which was firstly proved by Baader and Misev.
Keywords
Fibered knot; stabilization height; Hopf invariant; plane field;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Gabai, The Murasugi sum is a natural geometric operation, in Low-dimensional topology (San Francisco, Calif., 1981), 131-143, Contemp. Math., 20, Amer. Math. Soc., Providence, RI, 1983. https://doi.org/10.1090/conm/020/718138
2 D. Gabai, The Murasugi sum is a natural geometric operation. II, in Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982), 93-100, Contemp. Math., 44, Amer. Math. Soc., Providence, RI, 1985. https://doi.org/10.1090/conm/044/813105
3 E. Giroux, Geometrie de contact: de la dimension trois vers les dimensions superieures, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 405-414, Higher Ed. Press, Beijing, 2002.
4 E. Giroux and N. Goodman, On the stable equivalence of open books in three-manifolds, Geom. Topol. 10 (2006), 97-114. https://doi.org/10.2140/gt.2006.10.97   DOI
5 R. Yamamoto, Open books supporting overtwisted contact structures and the Stallings twist, J. Math. Soc. Japan 59 (2007), no. 3, 751-761. http://projecteuclid.org/euclid.jmsj/1191591856   DOI
6 R. Yamamoto, Stallings twists which can be realized by plumbing and deplumbing Hopf bands, J. Knot Theory Ramifications 12 (2003), no. 6, 867-876. https://doi.org/10.1142/S0218216503002779   DOI
7 R. E. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998), no. 2, 619-693. https://doi.org/10.2307/121005   DOI
8 N. D. Goodman, Contact structures and open books, ProQuest LLC, Ann Arbor, MI, 2003.
9 J. L. Harer, Pencils of curves on 4-manifolds, ProQuest LLC, Ann Arbor, MI, 1979.
10 J. L. Harer, How to construct all fibered knots and links, Topology 21 (1982), no. 3, 263-280. https://doi.org/10.1016/0040-9383(82)90009-X   DOI
11 J. L. Harer, The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983), no. 2, 221-239. https://doi.org/10.1007/BF01389321   DOI
12 M. Hedden, Some remarks on cabling, contact structures, and complex curves, in Proceedings of Gokova Geometry-Topology Conference 2007, 49-59, Gokova Geometry/Topology Conference (GGT), Gokova, 2008.
13 W. D. Neumann and L. Rudolph, Difference index of vectorfields and the enhanced Milnor number, Topology 29 (1990), no. 1, 83-100. https://doi.org/10.1016/0040-9383(90)90026-G   DOI
14 M. Hedden, Notions of positivity and the Ozsv'ath-Szab'o concordance invariant, J. Knot Theory Ramifications 19 (2010), no. 5, 617-629. https://doi.org/10.1142/S0218216510008017   DOI
15 M. Korkmaz and B. Ozbagci, Minimal number of singular fibers in a Lefschetz fibration, Proc. Amer. Math. Soc. 129 (2001), no. 5, 1545-1549. https://doi.org/10.1090/S0002-9939-00-05676-8   DOI
16 K. Larson and J. Meier, Fibered ribbon disks, J. Knot Theory Ramifications 24 (2015), no. 14, 1550066, 22 pp. https://doi.org/10.1142/S0218216515500662   DOI
17 J. R. Stallings, Constructions of fibred knots and links, in Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, 55-60, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, RI, 1978.
18 W. B. R. Lickorish, An Introduction to Knot Theory, Graduate Texts in Mathematics, 175, Springer-Verlag, New York, 1997. https://doi.org/10.1007/978-1-4612-0691-0
19 P. M. Melvin and H. R. Morton, Fibred knots of genus 2 formed by plumbing Hopf bands, J. London Math. Soc. (2) 34 (1986), no. 1, 159-168. https://doi.org/10.1112/jlms/s2-34.1.159   DOI
20 J. Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (1978), no. 3, 347-350. https://doi.org/10.2307/2043120   DOI
21 L. Rudolph, Isolated critical points of mappings from ℝ4 to ℝ2 and a natural splitting of the Milnor number of a classical fibered link. I, Basic theory; examples, Comment. Math. Helv. 62 (1987), no. 4, 630-645.   DOI
22 W. P. Thurston and H. E. Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975), 345-347. https://doi.org/10.2307/2040160   DOI
23 J. B. Etnyre and B. Ozbagci, Invariants of contact structures from open books, Trans. Amer. Math. Soc. 360 (2008), no. 6, 3133-3151. https://doi.org/10.1090/S0002-9947-08-04459-0   DOI
24 T. Abe and K. Tagami, Fibered knots with the same 0-surgery and the slice-ribbon conjecture, Math. Res. Lett. 23 (2016), no. 2, 303-323. https://doi.org/10.4310/MRL.2016.v23.n2.a1   DOI
25 T. Abe and K. Tagami, Fibered knots with the same 0-surgery and the slice-ribbon conjecture, Math. Res. Lett. 23 (2016), no. 2, 303-323. https://doi.org/10.4310/MRL.2016.v23.n2.a1   DOI
26 S. Baader and F. Misev, On the stabilization height of fiber surfaces in S3, J. Knot Theory Ramifications 27 (2018), no. 3, 1840001, 8 pp. https://doi.org/10.1142/S0218216518400011   DOI