DOI QR코드

DOI QR Code

On Crossing Changes for Surface-Knots

  • Al Kharusi, Amal (Department of Mathematics and Statistics, College of Science, Sultan Qaboos University) ;
  • Yashiro, Tsukasa (Department of Mathematics and Statistics, College of Science, Sultan Qaboos University)
  • Received : 2016.05.01
  • Accepted : 2016.10.21
  • Published : 2016.12.23

Abstract

In this paper, we discuss the crossing change operation along exchangeable double curves of a surface-knot diagram. We show that under certain condition, a finite sequence of Roseman moves preserves the property of those exchangeable double curves. As an application for this result, we also define a numerical invariant for a set of surface-knots called du-exchangeable set.

Keywords

References

  1. J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Mathematical Surveys and Monographs, 55, Amer. Math. Soc., Providence, RI, 1998.
  2. J. S. Carter and M. Saito, Surfaces in 3-space that do not lift to embeddings in 4-space, Knot Theory, Banach Center Proceedings, 42Polish Academy of Science, Warsaw, 4(1998), 29-47.
  3. T. Homma, Elementary deformations on homotopy 3-spheres, Topology and Com-puter Science, Kinokuniya, Tokyo, (1987), 21-27.
  4. M. Iwakiri, Unknotting singular surface braids by crossing changes, Osaka J. Math., 45(1)(2008), 61-84.
  5. M. Jabonowski, Knotted surfaces and equivalencies of their diagrams without triple points, J. Knot Theory Ramifications, 21(2012), pp. 6.
  6. S. Kamada, Crossing changes for singular 2-dimensional braids without branch points, Kobe J. Math., 13(1996), 177-182.
  7. K. Kawamura, On relationship between seven types of Roseman moves, Topology Appl., 196(B)(2015), 551-557. https://doi.org/10.1016/j.topol.2015.05.033
  8. R. Morton and G. Lukac, Homfly polynomial of decorated Hopf link, J. Knot Theory Rami cations, 12(2003), 395-416. https://doi.org/10.1142/S0218216503002536
  9. E. Ogasa, The projections of n-knots which are not the projection of any unkotted knot, J. Knot Theory Ramifications, 10(2001), 121132.
  10. D. Roseman, Reidemeister-type moves for surfaces in four dimensional space, Banach Center Publ., 42(1998), 347-380. https://doi.org/10.4064/-42-1-347-380
  11. S. Satoh, Surface diagrams of twist-spun 2-knots, J. Knot Theory Ramifications, 11(2002), 413-430. https://doi.org/10.1142/S0218216502001718
  12. S. Satoh and A. Shima, The 2-twist-spun trefoil has the triple point number four, Trans. Amer. Math. Soc., 356(2004), 1007-1024. https://doi.org/10.1090/S0002-9947-03-03181-7
  13. K. Tanaka, Crossing changes for pseudo-ribbon surface-knots, Osaka J. Math., 41(2004), 877-890.
  14. T. Yashiro, A note on Roseman moves, Kobe J. Math., 22(2005), 31-38.
  15. T. Yashiro, Triple point numbers of twist spun knots, J. Knot Theory Ramifications, 14(2005), 831-840. https://doi.org/10.1142/S021821650500410X
  16. T. Yashiro, Crossing distances of surface-knots, Topology Appl., 154(2007), 1532-1539. https://doi.org/10.1016/j.topol.2006.04.028
  17. K. Yoshida, Unknotting of pseudo-ribbon n-knots, J. Knot Theory Rami cations, 13(2004), 259-275. https://doi.org/10.1142/S0218216504003123