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Abstract. In this paper, we discuss the crossing change operation along exchangeable

double curves of a surface-knot diagram. We show that under certain condition, a finite

sequence of Roseman moves preserves the property of those exchangeable double curves.

As an application for this result, we also define a numerical invariant for a set of surface-

knots called du-exchangeable set.

1. Introduction

A surface-knot F is an orientable connected, closed surface smoothly embedded
in the Euclidean 4-space R4. It is is called an unknotted or trivial if it is isotopic
to the boundary of a handlebody embedded in R3 × {0}. To describe a surface-
knot F , we consider the image of the surface-knot under the orthogonal projection
p : R4 → R3 that is defined by p(x1, x2, x3, x4) = (x1, x2, x3). We may slightly
perturb F by an isotopy so that its projection image in R3 is a generic surface [1];
that is, its singularity set consists of at most three types: double points, isolated
triple points or isolated branch points. The surface-knot diagram, or simply the
diagram of a surface-knot F , denoted by D, is the generic projection image of F in
3-space with crossing information.
The crossing change in classical knot theory, that is defined by exchanging an upper
arc and a lower arc at a crossing point in a knot diagram, can be generalized to
theory of surface-knots. When the crossing change operation is defined, it is natural
to consider the following problem.

Problem 1. Let p(F ) be the projection of a surface-knot F in 3-space. Is there an
unknotted surface-knot F0 such that p(F ) = p(F0)?

In other words, can we transform any surface-knot diagram into a diagram of
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the trivial surface-knot by making suitable crossing changes? The crossing change
operation is called an unknotting operation for a surface-knot F if an unknotted
surface-knot is obtained from F by a finite sequence of crossing changes. Although
some projections of surface-knots are known to be projections of an unknotted
surface-knot [11], it is still an open problem whether all projections satisfy this
property; that is whether the crossing change is an unknotting operation for any
surface-knot. The answer for the problem is affirmative in the case of classical knot
theory and this fact is used to compute the invariants that are defined by skein
relations, e.g., [8]. Moreover an invariant, the unknotting number is defined.

When we explore into the literature related to Problem 1, we see that some
partial results were found. A special kind of crossing changes was defined [16],
but this kind can not be applied to any surface-knot diagram. A special surface
braid diagram is shown to be unknotted by crossing changes ([4], [6]). K. Tanaka
in [13] proved that any pseudo-ribbon surface-knot diagram can be deformed by
crossing changes into a diagram with knot group isomorphic to Z. K. Yoshida [17]
verified that the projection p of an Sn-knot (n 6= 3, 4) is the projection of a trivial
n-knot provided that the singularity set of p consists of only double points and is
homeomorphic to a disjoint union of (n−1)-spheres. E. Ogasa [9] proved that there
exists a projection of an Sn-knot which is not the projection of any trivial knot, for
n ≥ 3.

In this paper, we define a set of surface-knots called the du-exchangeable set
that contains du-exchangeable surface-knots. We show that for a du-exchangeable
surface-knot, there exists a finite sequence of surface-knot diagrams each of which
can be unknotted by the crossing changes. As an application for this result, we also
define a numerical invariant for the du-exchangeable set.

The rest of the paper is organized as follows. In section 2, we give some basics
about surface-knots to facilitate later discussions. In section 3, we recall Roseman
moves. In section 4, we define a finite sequence for a surface-knot represented by its
surface-knot diagrams, called a t-descendent sequence. In section 5, we review the
crossing change operation and section 6 is devoted to stating and proving the main
result. Finally, section 7 introduces an invariant for a set of surface-knots called the
du-exchangeable set.

2. Preliminaries

Let F be a surface-knot and let h : R4 → R be the height function,
h(x1, x2, x3, x4) = x4. Let cl(S) stand for the closure of the set S.

The closure of the set

{x ∈ F : #p−1(p(x)) ≥ 2}

can be regarded as the image of compact 1-dimensional manifold immersed into F .
It is divided into two families Sa = {s1a, . . . , sna} and Sb = {s1b , . . . , snb } of immersed
closed intervals or simple closed curves in F such that h(x) > h(x′) holds for any
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x ∈ sia and x′ ∈ sib (i = 1, 2, . . . , n). Let Sa = ∪ni=1cl(sia) and let Sb = ∪ni=1cl(sib).
The union Sa ∪ Sb is called the double decker set (see [1] and [2] for details).

Double points in a generic projection image of a surface-knot in 3-space form a
disjoint union of 1-manifolds that may appear as open arcs or simple closed curves.
We say that such an open arc is called a double edge. Let D be a surface-knot
diagram of a surface-knot F . Let e1, . . . , en, en+1 = e1 be double edges and let
T1, . . . , Tn, Tn+1 = T1 be triple points of D. For i = 1, . . . , n, assume that the
boundary points of each of ei are Ti and Ti+1 and that ei and ei+1 are in opposition
to each other at Ti+1. The closure of the union e1 ∪ e2 ∪ . . . ∪ en forms a circle
component called a double point circle of the diagram.

Similarly, let e1, . . . , en be double edges, T1, . . . , Tn−1 be triple points of D and
suppose b1 and bn are branch points of D. Assume the boundary points of e1 are
the triple point T1 and the branch point b1. Assume also that the double edge en
is bounded by Tn−1 and bn. For i = 2, . . . , n− 1, the double edge ei is bounded by
Ti−1 and Ti. If ei and ei+1 are in opposition to each other at Ti (1, 2, . . . , n − 1),
then the closure of the union e1 ∪ e2 ∪ . . . ∪ en forms an arc component called a
double point interval of the diagram. By a double curve, we refer to a double point
circle or a double point interval. Let T be a triple point of D and B(T ) a 3-ball
neighbourhood of T . The intersection of B(T ) and the double edges consists of six
short arcs. We call them the branches of double edges at T . A branch at T is called
a b/m-, b/t- or m/t-branch if it is the intersection between bottom and middle or
bottom and top or middle and top sheets, respectively.

3. Roseman Moves

D. Roseman introduced analogues of the Reidemeister moves as local moves
to surface-knot diagrams. Let D and D′ be surface-knot diagrams of F and F ′,
respectively. It is known that F and F ′ are equivalent if and only if there exists a
finite sequence of surface-knot diagrams D = D0 → D1 → . . .→ Dn = D′ such that
for all i = 0, 1, . . . , n− 1, Di and Di+1 differ by one of seven Roseman moves [10].
We will write D ∼ D′ to indicate that D and D′ present the same surface-knot.
T. Yashiro [14] showed that the Roseman’s seven moves can be described by six
moves depicted in Figure 1 (see also [7]). We call these moves also Roseman moves.
Each move from left to right is denoted by R-X+ and right to left by R-X− except
R-6. The move R-X− is called the reverse of R-X+. Note that the information on
height has not been specified in Figure 1.
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Figure 1: Roseman moves

Here we describe the R-6 move. Type R-6 move consists of deformations of
two disks P1 and P2 in a surface-knot diagram D. The disk P1 forms a saddle
point and the other disk P2 passing through the saddle point of P1 in a direction
perpendicular to the tangent plane at the saddle point. The two disks P1 and P2

intersect at two double edges, say e1 from a1 to a2 and e2 from b1 to b2, where
ai and bi (i = 1, 2) are boundary points of P2. We give an order to these bound-
ary points such that the four points are ordered as {a1, a2, b1, b2} with respect to
the orientation of the boundary. As P2 passes through the saddle point of P1, the
two double edges e1 and e2 get closer and join at the middle point of each double
edge. As a result, the new double edges e′1 from a1 to b2 and e′2 from a2 to b1 appear.

Assume that the R-6 move is applied to the pair of disks P1 and P2. In the
notation above, let a be the middle point of the double segment e1 and let b be the
middle point of the double segment e2. Then we can find a disk P , in a closure of
one of complementary open regions of D, satisfying the following properties:

(1) ∂P = l1 ∪ l2, where l1 and l2 are two simple arcs in D, each of which is
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terminated by a and b;

(2) One of li (i = 1, 2) is on P1 and the other one is on P2;

(3) The pre-images of li (i = 1, 2) do not meet with Sa ∪Sb other than their end
points.

(4) The two endpoints of one of the pre-images li (i = 1, 2) are on Sa and both
endpoints of the other one are on Sb.

The disk P is called a descendent disk of D [3]. Conversely, if a descendent disk
exists, then R-6 can be applied. In this sense, the two descendent disks involved in
the left and right of R-6 are said to be dual to each other.

4. t-descendent Sequences

Let D = D0 → D1 → . . . → Dn = D′ be a finite sequence of surface-knot
diagrams satisfying the following condition:

(*) A transition from Di to Di+1 (i = 0, . . . , n − 1) is done by one of Roseman
moves which can be realized by an isotopy of the surface-knot in R4 without
creating a triple point in the projection.

In other words, the above condition says that the finite sequence of Roseman moves
that connects D and D′ does not include the Roseman moves R-i+ (i = 2, 3, 5).
Note that the reverse moves of these prohibited moves are allowed.

Definition 4.1. A finite sequence of surface-knot diagrams satisfying the condition
(*) is called a t-descendent sequence.

The terminology ”t-descendent” is used to clarify that the number of triple points
will not increase under the sequence.

Remark 4.2. We point out here that M. Jabonowski published a paper [5] in
which he provided an example of two equivalent surface-knot diagrams which can
not be connected by a t-descendent sequence. Both diagrams in the example are
with singularity set consisting of only closed 1-manifolds.

5. The Crossing Change Operation

A crossing change operation is a local operation for a diagram of a surface-knot
which has a natural analogy to the crossing changes of classical knots.

Definition 5.1. Let D be a surface-knot diagram of a surface-knot. Let Γ = ∪rj=1γj
be a union of double curves in D. Γ is exchangeable if a surface-knot diagram is
obtained from D by changing the upper/lower information along the double curves
of Γ simultaneously. This operation is called the crossing change operation along Γ,
and we denote by D(Γ) the surface-knot diagram obtained from D by the operation.
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We do not assume that D and D(Γ) present distinct surface-knots.

Let T be a triple point of D. The figure below shows all possible cases of
changing the crossing information around the triple point T , where the branches at
T contained in Γ are bold lines for each possible case.

Figure 2: Changing the crossing information around a triple point

Remark 5.2. Let D be a surface-knot diagram and γ be a double curve in D.
Assume γ ⊂ Γ where Γ is exchangeable. Suppose γ has an edge which contains
a b/t-branch at a triple point. Then, the b/m-branches or m/t-branches at T are
subsets of a double curve in D that is contained in Γ.

Definition 5.3. Let Γ be an exchangeable union of double curves of a surface-knot
diagram D. We say that Γ satisfies the descendent disk condition for D if exchanging
the crossing information along the double curves of Γ preserves all descendent disks
of D. We say that Γ satisfies the unknotting condition for D if the surface-knot
diagram D(Γ) presents an unknotted surface-knot.

Definition 5.4. A surface-knot diagram D is called du-exchangeable if it presents
an unknotted surface-knot or it has an exchangeable union of double curves Γ
satisfying both the descendent disk condition and the unknotting condition for D.

Definition 5.5. A surface-knot F is du-exchangeable if there is a surface-knot
diagram D presenting F such that D is du-exchangeable.

Remark 5.6. It is not difficult to see that any surface-knot diagram of a surface-
knot has exchangeable double curves satisfying the descendent disk condition. For
example, the union of all double curves of a surface-knot diagram is exchangeable
and it satisfies the descendent disk condition.

6. The Main Result

In this section we prove the main theorem in this paper (Theorem 6.4.). In
particular, the proof is divided into three lemmas.

Let D be a surface-knot diagram of a surface-knot F . Let Γ = ∪rj=1γj be
an exchangeable union of double curves in D. The surface-knot diagram obtained
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after cross-change operation along Γ applied is denoted by D(Γ). Throughout the
proof of the three lemmas in this section, Γ(s) denotes the union of double curves
γ1 ∪ γ2 ∪ . . .∪ γ(s−1) ∪ γ̂s ∪ γ(s+1) ∪ . . .∪ γr that is obtained from Γ by deleting the

double curve γs. Similarly, we define Γ(s,w) to be the union of double curves that
is obtained from Γ by deleting the double curves γs and γw.

Lemma 6.1. Suppose that D is transformed into D′ by one of the Roseman moves
of R-i− (i = 2, 3, 5). For any exchangeable union Γ of double curves of D, there is an
exchangeable union Γ′ of double curves of D′ such that D(Γ) ∼ D′(Γ′). Moreover, if
Γ satisfies the descendent disk condition, then we may assume that Γ′ also satisfies
it.

Proof. Let Γ = ∪rj=1γj be an exchangeable union of double curves in D satisfying
the descendent disk condition for D. We need to define an exchangeable union of
double curves Γ′ in D′ that satisfies the assertion of the lemma for each Roseman
move R-i− (i = 2, 3, 5).

The Roseman move R-2− can be viewed that it takes the paraboloid away from
the double edge so that the paraboloid does not meet with the two intersecting disks
(see R-2± in Figure 1). Let γs be a double point curve in D containing branches
formed by the two disks. By applying R-2−, γs is restricted to a double curve γ′s of
D′ that has less triple points by two. The exchangeable union of double curves Γ′

of D′ is defined as follows.

Γ′ =

{
Γ if γs * Γ

Γ(s) ∪ γ′s if γs ⊂ Γ.

We see that the diagram D′(Γ′) differs from D(Γ) by the move R-2− and thus they
are equivalent.

The move R-3− can be viewed that it takes the paraboloid away from the triple
point T so that it does not meet with the three intersecting disks (see R-3± in
Figure 1). This leads to elimination of six triple points and three double point
circles. Assume that the b/m- branches at T are subsets of the double curve γs of
D, the m/t- branches at T are subsets of the double curve γw of D and the b/t-
branches at T are subsets of the double curve γk of D. By applying R-3−, γs is
transformed to a double curve γ′s of D′ such that γ′s has less double edges than γs
by two. Similarly, γw and γk of D are transformed to γ′w and γ′k in D′, respectively.
We define Γ′ by

Γ′ =



Γ if γs, γw, γk * Γ

Γ(s) ∪ γ′s if γs ⊂ Γ, γw, γk * Γ

Γ(w) ∪ γ′w if γw ⊂ Γ, γs, γk * Γ

Γ(k,s) ∪ γ′s ∪ γ′k if γs and γk ⊂ Γ, γw * Γ

Γ(k,w) ∪ γ′w ∪ γ′k if γw and γk ⊂ Γ, γs * Γ

Γ(k,s,w) ∪ γ′s ∪ γ′w ∪ γ′k if γs, γw, γk ⊂ Γ
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From the definition of Γ′, we obtain that the diagram D′(Γ′) differs from D(Γ)
by the move R-3−. It follows that they are equivalent.

The move R-5− can be described as moving a disk with a branch point away
from the second disk (see R-5± in Figure 1) and thus a triple point T is cancelled.
Let the branch of T whose other endpoint is a branch point be a subset of a double
curve γs of D. By applying R-5− to D, γs is restricted to the double curve γ′s of
D′ that has less double edges by one. Define

Γ′ =

{
Γ if γs * Γ

Γ(s) ∪ γ′s if γs ⊂ Γ

It follows that the transition from D(Γ) to D′(Γ′) is done by R-5−. We obtain
that D(Γ) ∼ D′(Γ′).

It remains to prove that Γ′ defined above for each Roseman move R-i− (i =
2, 3, 5) satisfies the descendent disk condition. Note that none of the three moves
R-i− (i = 2, 3, 5) create new double edges and thus no new descendent disks are
involved in D′. Since D satisfies the descendent disk condition, we can assume that
D′ also does. 2

Lemma 6.2. Suppose that D is transformed into D′ by one of the Roseman moves
of R-i− and R-i+ (i = 1, 4). For any exchangeable union Γ of double curves of D,
there is an exchangeable union Γ′ of double curves of D′ such that D(Γ) ∼ D′(Γ′).
Moreover, if Γ satisfies the descendent disk condition, then we may assume that Γ′

also satisfies it.

Proof. We prove the moves R-1+ and R-1−. The moves R-4+ and R-4− are similarly
proved. The Roseman move R-1+ has the affect of adding a simple double point
circle, denoted by γ′ , that is independent from the other double curves of the
diagram. The resulting double curve might be involved in a descendent disk where
the other involved double edge is in D. Assume that the new descendent disk
created is P and that each of γ′ and γs contains a boundary point of P , where γs
is a double curve of D. We define Γ′ in this case such that

Γ′ =

{
Γ if γs * Γ

Γ ∪ γ′ if γs ⊂ Γ

If there is no such a descendent disk, we can assume that Γ′ = Γ. It is not hard
to see that D(Γ) ∼ D′(Γ′) in both cases and that Γ′ satisfies the descendent disk
condition by the definition. The move R-1− is the reverse of R-1+. The double
edge γ′ will be eliminated as a result. Denote γ′ by γw for this move. Then, Γ′ of
D′ that satisfy the assertion of the lemma can be defined such that

Γ′ =

{
Γ if γw * Γ

Γ(w) if γw ⊂ Γ

The lemma follows. 2
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Lemma 6.3. Suppose that D is transformed into D′ by Roseman move of R-6.
Let Γ be an exchangeable union of double curves of D satisfying the descendent disk
condition. Then there is an exchangeable union Γ′ of double curves of D′ such that
D(Γ) ∼ D′(Γ′) and that Γ′ also satisfies the descendent disk condition.

Proof. Let P be a descendent disk of D and suppose R-6 move is applied along P
to obtain the surface-knot diagram D′. Let e1 and e2 be double edges of D each of
which contains a boundary point of P . Assume that e1 ⊂ γs and e2 ⊂ γw, where
γs and γw are double curves of D. Since Γ satisfies the descendent disk condition,
either the upper/lower information of both γs and γw are exchanged or neither.
In the latter case, the result follows by letting Γ′ = Γ. On the other hand, let γs
and γw be subsets of Γ. Apply R-6 to obtain the surface-knot diagram D′. The
connection between the double edges e1 and e2 is changed so that we obtain new
double edges, say e′1 and e′2 in D′. Assume that e′1 and e′2 are subsets of double
curves γ′s and γ′w of D′, respectively. Exchanging the upper/lower information of

Γ′ = Γ(s,w) ∪ γ′s ∪ γ′w

in D′ gives a surface-knot diagram equivalent to D(Γ). 2

Theorem 6.4. Let F be a du-exchangeable surface-knot and D be a du-exchangeable
surface-knot diagram of F . There exists a finite t-descendent sequence D = D0 →
D1 → . . .→ Dn = D′ such that for each i = 1, . . . , n, Di is du-exchangeable.

Proof. Without loss of generality, we can assume that D′ is obtained from D by
applying a single Roseman move of one of the possible types in a t-descendent
sequence. The theorem then follows from Lemma 6.1., Lemma 6.2. and Lemma
6.3. 2

Example 6.5. The triple point number of a surface-knot, denoted by t(F ) is de-
fined to be the minimal number of triple points over all possible diagrams of the
surface-knot. Let K be a knot in R3 such that K has a knot diagram DK with c
crossings in which there is a full twisted trivial tangle with 2-strings. S. Satoh and
A. Shima estimated in [12] the upper bound of triple point number for the m-twist
spun of the knot K, τm(K). In fact, they showed that t

(
τm(K)

)
≤ 2(c− 2)m. T.

Yashiro in [15] gave an improved upper bound for some family of twist-spun knots
including the m-twist spun of the knot K described above. Both upper bounds
can be obtained by deforming surface-knot diagrams that are obtained by following
Satoh’s construction [11]. In particular, the deformations applied in both cases are
done by t-descendent sequences.

7. The du-exchange Index

Let F be a du-exchangeable surface-knot. The du-exchange index du(F ) is de-
fined as follows.

Definition 7.1. The du-exchange index du(F ) of a du-exchangeable surface-knot
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F is the minimum number of double curves required, taken over all du-exchangeable
diagrams representing F , to convert F into a trivial surface-knot.

The du-exchange index is an invariant for du-exchangeable surface-knots.

Example 7.2. S. Satoh and A. Shima in [12] gave an estimate for a lower bound of
the triple point number for tri-colourable surface-knots. Using this estimate, they
showed that the 2-twist spun trefoil has the triple point number four. Let K be the
trefoil knot and let DK be a knot diagram of K with 3 crossings. Let T (K) be the
one string tangle obtained from DK by removing a small 1-dim trivial neighbour-
hood of a point on the diagram DK . By following Satoh’s construction of diagrams
of twist-spun knots [11], we obtain a surface-knot diagram of the 2-twist spun tre-
foil with twelve triple points. In particular, Satoh’s diagram can be deformed into
one with four triple points by a t-descendent sequence involving Roseman moves
R-2−, R-5− and R-6. Figure 3 depicts a schematic picture of the double curves of a
t-minimal diagram of the 2-twist spun trefoil showing the types of double branches
at each triple point.

Figure 3: Schematic picture of the double curves of a t-minimal diagram of the 2-twist spun trefoil

From the figure, we see that there are three double curves and two of them
are double point intervals. Note that exchanging the crossing information of the
double point circle gives a trivial 2-knot diagram and this shows that the 2-twist
spun trefoil has the du-exchange index equal to one.
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