• Title/Summary/Keyword: kernel regression

Search Result 240, Processing Time 0.025 seconds

A Differential Evolution based Support Vector Clustering (차분진화 기반의 Support Vector Clustering)

  • Jun, Sung-Hae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.679-683
    • /
    • 2007
  • Statistical learning theory by Vapnik consists of support vector machine(SVM), support vector regression(SVR), and support vector clustering(SVC) for classification, regression, and clustering respectively. In this algorithms, SVC is good clustering algorithm using support vectors based on Gaussian kernel function. But, similar to SVM and SVR, SVC needs to determine kernel parameters and regularization constant optimally. In general, the parameters have been determined by the arts of researchers and grid search which is demanded computing time heavily. In this paper, we propose a differential evolution based SVC(DESVC) which combines differential evolution into SVC for efficient selection of kernel parameters and regularization constant. To verify improved performance of our DESVC, we make experiments using the data sets from UCI machine learning repository and simulation.

On a Transformation Technique for Nonparametric Regression

  • Kim, Woochul;Park, Byeong U.
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.2
    • /
    • pp.217-233
    • /
    • 1996
  • This paper gives a rigorous proof of an asymptotic result about bias and variance for a transformation-based nonparametric regression estimator proposed by Park et al (1995).

  • PDF

Prediction of Remaining Useful Life of Lithium-ion Battery based on Multi-kernel Support Vector Machine with Particle Swarm Optimization

  • Gao, Dong;Huang, Miaohua
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1288-1297
    • /
    • 2017
  • The estimation of the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is important for intelligent battery management system (BMS). Data mining technology is becoming increasingly mature, and the RUL estimation of Li-ion batteries based on data-driven prognostics is more accurate with the arrival of the era of big data. However, the support vector machine (SVM), which is applied to predict the RUL of Li-ion batteries, uses the traditional single-radial basis kernel function. This type of classifier has weak generalization ability, and it easily shows the problem of data migration, which results in inaccurate prediction of the RUL of Li-ion batteries. In this study, a novel multi-kernel SVM (MSVM) based on polynomial kernel and radial basis kernel function is proposed. Moreover, the particle swarm optimization algorithm is used to search the kernel parameters, penalty factor, and weight coefficient of the MSVM model. Finally, this paper utilizes the NASA battery dataset to form the observed data sequence for regression prediction. Results show that the improved algorithm not only has better prediction accuracy and stronger generalization ability but also decreases training time and computational complexity.

Nonparametric M-Estimation for Functional Spatial Data

  • Attouch, Mohammed Kadi;Chouaf, Benamar;Laksaci, Ali
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.193-211
    • /
    • 2012
  • This paper deals with robust nonparametric regression analysis when the regressors are functional random fields. More precisely, we consider $Z_i=(X_i,Y_i)$, $i{\in}\mathbb{N}^N$ be a $\mathcal{F}{\times}\mathbb{R}$-valued measurable strictly stationary spatial process, where $\mathcal{F}$ is a semi-metric space and we study the spatial interaction of $X_i$ and $Y_i$ via the robust estimation for the regression function. We propose a family of robust nonparametric estimators for regression function based on the kernel method. The main result of this work is the establishment of the asymptotic normality of these estimators, under some general mixing and small ball probability conditions.

Estimation of long memory parameter in nonparametric regression

  • Cho, Yeoyoung;Baek, Changryong
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.611-622
    • /
    • 2019
  • This paper considers the estimation of the long memory parameter in nonparametric regression with strongly correlated errors. The key idea is to minimize a unified mean squared error of long memory parameter to select both kernel bandwidth and the number of frequencies used in exact local Whittle estimation. A unified mean squared error framework is more natural because it provides both goodness of fit and measure of strong dependence. The block bootstrap is applied to evaluate the mean squared error. Finite sample performance using Monte Carlo simulations shows the closest performance to the oracle. The proposed method outperforms existing methods especially when dependency and sample size increase. The proposed method is also illustreated to the volatility of exchange rate between Korean Won for US dollar.

Estimating small area proportions with kernel logistic regressions models

  • Shim, Jooyong;Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.941-949
    • /
    • 2014
  • Unit level logistic regression model with mixed effects has been used for estimating small area proportions, which treats the spatial effects as random effects and assumes linearity between the logistic link and the covariates. However, when the functional form of the relationship between the logistic link and the covariates is not linear, it may lead to biased estimators of the small area proportions. In this paper, we relax the linearity assumption and propose two types of kernel-based logistic regression models for estimating small area proportions. We also demonstrate the efficiency of our propose models using simulated data and real data.

Kernel Poisson Regression for Longitudinal Data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1353-1360
    • /
    • 2008
  • An estimating procedure is introduced for the nonlinear mixed-effect Poisson regression, for longitudinal study, where data from different subjects are independent whereas data from same subject are correlated. The proposed procedure provides the estimates of the mean function of the response variables, where the canonical parameter is related to the input vector in a nonlinear form. The generalized cross validation function is introduced to choose optimal hyper-parameters in the procedure. Experimental results are then presented, which indicate the performance of the proposed estimating procedure.

  • PDF

Quantile regression using asymmetric Laplace distribution (비대칭 라플라스 분포를 이용한 분위수 회귀)

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1093-1101
    • /
    • 2009
  • Quantile regression has become a more widely used technique to describe the distribution of a response variable given a set of explanatory variables. This paper proposes a novel modelfor quantile regression using doubly penalized kernel machine with support vector machine iteratively reweighted least squares (SVM-IRWLS). To make inference about the shape of a population distribution, the widely popularregression, would be inadequate, if the distribution is not approximately Gaussian. We present a likelihood-based approach to the estimation of the regression quantiles that uses the asymmetric Laplace density.

  • PDF

Varying coefficient model with errors in variables (가변계수 측정오차 회귀모형)

  • Sohn, Insuk;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.971-980
    • /
    • 2017
  • The varying coefficient regression model has gained lots of attention since it is capable to model dynamic changes of regression coefficients in many regression problems of science. In this paper we propose a varying coefficient regression model that effectively considers the errors on both input and response variables, which utilizes the kernel method in estimating the varying coefficient which is the unknown nonlinear function of smoothing variables. We provide a generalized cross validation method for choosing the hyper-parameters which affect the performance of the proposed model. The proposed method is evaluated through numerical studies.

Change-Points with Jump in Nonparametric Regression Functions

  • Kim, Jong-Tae
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.193-199
    • /
    • 2005
  • A simple method is proposed to detect the number of change points with jump discontinuities in nonparamteric regression functions. The proposed estimators are based on a local linear regression fit by the comparison of left and right one-side kernel smoother. Also, the proposed methodology is suggested as the test statistic for detecting of change points and the direction of jump discontinuities.

  • PDF