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Abstract
This paper deals with robust nonparametric regression analysis when the regressors are functional random

fields. More precisely, we consider Zi = (Xi, Yi), i ∈ NN be a F × R-valued measurable strictly stationary spatial
process, where F is a semi-metric space and we study the spatial interaction of Xi and Yi via the robust estimation
for the regression function. We propose a family of robust nonparametric estimators for regression function based
on the kernel method. The main result of this work is the establishment of the asymptotic normality of these
estimators, under some general mixing and small ball probability conditions.

Keywords: Asymptotic distribution, spatial data, functional data, kernel estimate, nonparametric
model, robust estimation, small balls probability.

1. Introduction

Denote the integer lattice points in the N-dimensional Euclidean space by ZN and consider a strictly
stationary functional random field Zi = (Xi,Yi), indexed by ZN and defined on some probability space
(Ω,A, IP). Suppose that Zi∈ZN , takes values in F × R. F is a semi-metric space which is endowed
with a semi-metric d(· , ·). Our purpose is to study the spatial co-variation between (Xi and Yi) via the
robust estimation of the regression function. This nonparametric model, denoted by θx, is implicitly
defined as a zero with respect to (w.r.t.), t, of the equation

Ψ(x, t) := IE
[
ψx(Yi, t) | Xi = x

]
= 0,

where ψx is a real-valued Borel function satisfying some regularity conditions to be stated below. We
suppose that, for all x ∈ F , θx exists and is unique (see, for instance, Boente and Fraiman (1989)).

Noting that, a robust regression is an important analysis tool in statistics. It is used to circum-
vent some limitations of a classical regression, namely, when the data are heteroscedastic or contain
outliers. Moreover, in this area of functional spatial statistic, the data are collected in spatial order
with the grid of the measurement fairly finer which makes it bulky and with a strong probability to
be affected by the presence of outliers. Although, a modern technology and advanced computing
environments have facilitated the collection and analysis of such data; however, the disinfection of
the outliers is an important step to highlight the features of any data set. Therefore, there is a real
necessity in this area to develop some procedures insensitive to deviations due to the presence of
atypical or heteroskedatic observations. This is the main motivation of this work. It should be noted
that, there is an increasing number of situations coming from different fields of applied sciences in
which the data are of functional nature and show spatial interaction (such as soil science, geology,
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oceanography, econometrics, epidemiology, environmental science, and forestry). In the finite dimen-
sional framework, the statistic modelization of spatial data had received significant attention, see for
example, Guyon (1995), Anselin and Florax (1995), Cressie (1991) or Ripley (1981). However, the
nonparametric treatment of such data has only really been developed in the last two decades. Key ref-
erences on this subject are Tran (1990), Biau and Cadre (2004), Dabo-Niang and Yao (2007), Carbon
et al. (2007) and Li and Tran (2009). Recently, the spatial data has also modeled using some robust
procedure see, for instance Xu and Wang (2008), Hallin et al. (2009) and Gheriballah et al. (2010).

Since the monographies by Ramsay and Silverman (2002, 2005), Bosq (2000) and Ferraty and
Vieu (2006) a vast literature has been developed in functional data analysis. Nonparametric robust
estimation for functional data had also received a great attention in this field. The first results in this
topic were introduced by Cadre (2001). He studied the median estimation (without conditioning) of
the distribution of a random variable taking its values in a Banach space. Azzedine et al. (2008)
adapts to the functional data the local M-estimator of Collomb and Härdle (1986). They established
the almost complete convergence of the adapted estimate in the i.i.d. case. The asymptotic normality
of this latter has been studied by Attouch et al. (2009). The robust analysis in functional time series,
which is a particular case of functional random filed (N = 1), has been investigated by many authors.
We cite, for example, Crambes et al. (2008) for the convergence in Lq norm, Attouch et al. (2010)
for the asymptotic normality and Chen and Zhang (2009) for the weak and strong consistency of the
nonparametric functional conditional location estimate in the mixing case.

This paper studies the asymptotic behavior of a robust smoother estimate for functional spatial
regression. This estimate is constructed by combining the ideas of robustness with those of smoothed
regression that allows us to obtain reliable estimations when outlier observations are present in the
responses. The main result of this work is that, under general mixing assumptions, the estimator
considered is asymptotically normally distributed. Notice that, this work extends to spatial case the
results given by Attouch et al. (2010) in functional time series data.

The paper is organized as follows: the next Section is dedicated to fixing notations and hypotheses.
We state our main result and we list some preliminary results for its proof in Section 3. In Section 4
we discuss the impact of our results compared with those obtained in multivariate case or functional
time series cases and we present some applications of the asymptotic normality property. All proofs
are given in the appendix.

2. The Spatial Estimate

In the remainder of the paper, we suppose that (Zi) is observed over a rectangular domain In = {i =
(i1, . . . , iN) ∈ ZN , 1 ≤ ik ≤ nk, k = 1, . . . ,N}, n = (n1, . . . , nN) ∈ ZN . A point i will be referred to as
a site. We will write n → ∞ if min{nk} → ∞ and |n j/nk | < C for a constant C such that 0 < C < ∞
for all j, k such that 1 ≤ j, k ≤ N. For n = (n1, . . . , nN) ∈ ZN , we set n̂ = n1 × · · · × nN and
1 = (1, . . . , 1) ∈ ZN . We consider a spatial kernel estimate of Ψ(x, t), denoted by Ψ̂(x, t), defined by

Ψ̂(x, t) :=
∑

i∈In K(h−1d(x, Xi))ψ(Yi, t)∑
i∈In K(h−1d(x, Xi))

, (2.1)

where K is a kernel and h = hK,n is a sequence of positive real numbers. A natural estimator θ̂x of θx,
is a zero w.r.t. t of the equation

Ψ̂(x, t) = 0. (2.2)
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Our main goal is to study the asymptotic normality of the nonparametric estimate θ̂x of θx when the
random filed (Zi, i ∈ NN) satisfies the following mixing condition:

There exists a function φ (t) ↓ 0 as t → ∞, such that
∀ E, E

′
subsets of NN with finite cardinals

α
(
B (E) , B

(
E
′))
= sup

B∈B(E),C∈B(E′ )
|IP (B ∩C) − IP (B) IP (C)|

≤ s
(
Card (E) ,Card

(
E
′))
φ
(
dist

(
E, E

′))
,

(2.3)

whereB (E)(resp.B(E
′
)) denotes the Borel σ-field generated by (Zi, i ∈ E) (resp. (Zi, i ∈ E

′
)), Card(E)

(resp. Card(E
′
)) the cardinality of E (resp. E

′
), dist(E, E

′
) the Euclidean distance between E and E

′

and s : N2 → IR+ is a symmetric positive function nondecreasing in each variable such that:

s (n,m) ≤ C min (n,m) , ∀ n,m ∈ N. (2.4)

We also assume that the process satisfies the following mixing condition:

∞∑
i=1

iδφ(i) < ∞, δ > 0. (2.5)

Noting that condition (2.4) and (2.5) are used in Tran (1990), Carbon et al. (1996) and are satisfied
by many spatial models (see Guyon (1987) for some examples). It should be noted that if N = 1, then
Zi is called strongly mixing (see Doukhan et al. (1994) for discussion on mixing and examples).

3. Notations and Hypotheses

All along the paper, when no confusion is possible, we will denote by C and C′ some strictly positive
generic constants, x is a fixed point in F and Nx denote a fixed neighborhood of x. Moreover, for all
i ∈ In, we put Ki(x) = K(h−1d(x, Xi)) and we pose Ψ̂(x, t) = Ψ̂N(x, t)/Ψ̂D(x) with

Ψ̂D(x) =
1

n̂IE[K1(x)]

∑
i∈In

Ki(x) and Ψ̂N(x, t) =
1

n̂IE[K1(x)]

∑
i∈In

Ki(x)ψx(Yi, t).

In order to establish our asymptotic results we need the following hypotheses:

(H1) ∀ r > 0, IP(X ∈ B(x, r)) =: ϕx(r) > 0, where B(x, r) = {x′ ∈ F /d(x, x′) < r}.

(H2) ∀ i , j,

0 < sup
i,j

IP
[
(Xi, Xj) ∈ B(x, h) × B(x, h)

]
≤ C(ϕx(h))

a+1
a , for some 1 < a < δN−1.

(H3) The function Ψ is such that:

(i) The function Ψ(x, ·) is of class C1 on [θ(x) − δ, θ(x) + δ], δ > 0,

(ii) For each fixed t ∈ [θ(x) − δ, θ(x) + δ], the function Ψ( · , t) satisfies Hölder’s condition
w.r.t. the first one, that is: there exist strictly positives constants b such that ∀ x1, x2 ∈ Nx,
|Ψ(x1, t) − Ψ(x2, t)| ≤ Cdb(x1, x2) where Nx is a fixed neighborhood of x.
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(H4) ψx is strictly monotone function and bounded.

(H5) The bandwidth h satisfies:

h ↓ 0, ∀ t ∈ [0, 1] lim
h→0

ϕx(th)
ϕx(h)

= βx(t) and nϕx(h)→ ∞, as n→ ∞.

(H6) The kernel K from IR into IR+ is a differentiable function supported on [0, 1]. Its derivative K
′

exists and is such that there exist two constants C3 and C4 with −∞ < C3 < K
′
(t) < C4 < 0 for

0 ≤ t ≤ 1.

(H7) There exists η0 ∈
]

1
1 + N + δ

,
1

1 + 2N

[
, such that n̂−

1
1+2N +η0 ≤ ϕx(h).

Remarks on the assumptions: As all the asymptotic results in nonparametric statistics for functional
variables are closely related to the concentration properties of the probability measure of the functional
variable X. The same thing here, this property quantified by mean of the function ϕx(·) defined in
condition (H1). Such function can be explicated for several continuous processes (see Ferraty et al.,
2006). Condition (H2) measure the local dependence of the observations. As usually in nonparametric
problems, the infinite dimension of the model is controlled by mean of a smoothness condition (H3).
This condition is needed to evaluate the bias component of the rates of convergence. Condition (H4)
controls the robustness properties of our model. More precisely, we consider the robustification given
by Collomb and Härdle (1986) in the multivariate case, where the score function ψx is indexed by
x. This permits is to include, for instance, the functional nonparametric regression model the scale
of the error is assumed to be known, where ψx(·) = ψ(·/σ(x)), with σ(·) is measure of spread for
the conditional distribution of Y given X = x. We point out that the boundedness hypotheses over
ψx(·) can be dropped by using the truncation method as in Laı̈b and Ould-Saı̈d (2000). However the
boundedness of the score function is fundamental constraint of the robustness properties of the M-
estimators. Assumptions (H5)∼(H7) are standard condition for obtaining the normality asymptotic in
kernel estimate for functional statistic.

Theorem 1. Assume that (H1)∼(H7) hold and if the bandwidth parameter h satisfies n̂h2b1ϕx(h)→ 0
as n→ ∞, then we have for any x ∈ A,(

n̂ϕx(h)
σ2(x, θ(x))

) 1
2 (
θ̂(x) − θ(x)

) D→ N(0, 1), as n→ ∞.

where

σ2(x, θx) =
β2IE

[
ψ2

x(Y, θx)|X = x
]

(
β1

∂
∂tΨ(x, θ(x))

)2

(
with β j = −

∫ 1

0
(K j)

′
(s)βx(s)ds, for j = 1, 2

)
,

A =
{

x ∈ F , IE
[
ψ2

x(Y, θx)|X = x
] ∂
∂t
Ψ(x, θ(x)) , 0

}

and
D→ means the convergence in distribution.
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Proof: We give the proof for the case of a increasing ψx, decreasing case being obtained by consider-
ing −ψx. In this case, we define, for all u ∈ IR, z = θ(x) + u[n̂ϕx(h)]−1/2σ(x, θ(x)). Let us remark that,
if Ψ̂D(x) is not equal to zero, the definition of the estimator by (2.2) is equivalent to

Ψ̂N

(
x, θ̂(x)

)
= 0.

Hence, if Ψ̂D(x) , 0 we can write

IP


(

n̂ϕx(h)
σ2(x, θ(x))

) 1
2 (
θ̂(x) − θ(x)

)
< u

 = IP
{
θ̂(x) < θ(x) + u

[
n̂ϕx(h)

]− 1
2 σ(x, θ(x))

}
= IP

{
0 < Ψ̂N(x, z)

}
= IP

{
IE

[
Ψ̂N(x, z)

]
− Ψ̂N(x, z) < IE

[
Ψ̂N(x, z)

]}
.

Therefore, Theorem 1 is a consequence of the following intermediates results, where their proofs
are postponed to the appendix. �

Lemma 1. Under Hypotheses (H1)∼(H3) and (H6) , we have

IP
{(
Ψ̂D(x) = 0

)}
−→ 0, as n −→ ∞.

Lemma 2. Under the Hypotheses of Theorem 1, we have for any x ∈ A n̂ϕx(h)(
∂
∂tΨ(x, θ(x))

)2
σ2(x, θ(x))


1
2 (
Ψ̂N(x, z) − IE

[
Ψ̂N(x, z))

]) D→ N(0, 1), as n→ ∞.

Lemma 3. Under hypotheses (H1′), (H3), (H6) and if the bandwidth parameter h satisfies n̂h2b1ϕx(h)
→ 0 as n→ ∞, we have n̂ϕx(h)(

∂
∂tΨ(x, θ(x))

)2
σ2(x, θ(x))


1
2

IE
[
Ψ̂N(x, z)

]
= u + o(1), as n→ ∞.

4. Discussion

• On the nonparametric robust analysis of functional spatial data: As indicated in the introduction,
the general framework of this paper is the robust modeling of functional data presenting spatial
dependence. Noting that the modelization of this kind of data has been selected by Ramsay (2008)
among the eight most interesting research subject in functional data analysis. This great consider-
ation is motivated by the increasing number of situations coming from different fields of applied
sciences for which the data are of functional nature and showing a spatial interaction. Typically,
the continuously indexed random filed, the spatio-temporal process and the point process are the
most important example of functional spatial data (see, Delicado et al., 2010). Of course, these
process can be analyzed through the use of the multivariate approach, where, we assume that the
underlying process (Zt∈RN ) is observed on some discrete grid. We point out that there are various
sampling designs can be employed; however, two kinds of these sampling are most useful: deter-
ministic (points are chosen according to a deterministic rule, for example, periodic sampling) and
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random (points are chosen randomly, for example, Poisson sampling). In the nonparametric pre-
diction context, this multivariate approach has been considered by many authors in the past (see,
for instance, Biau (2003) and Gheriballah et al. (2010) for the robust case). However, this approach
suffers from the curse of dimensionality, if the number of sampling location is large. Moreover,
with this transformation we lose several characteristics of the original data (the correlation data,
the functional nature of data, homoscedasticity or the heteroscedasticity of the data). Specifically,
the variability of the transformed data is linked to the used sampling; subsequently, this transfor-
mation may generate ghosts outliers and hide the true outliers. These defects can seriously distort
the use of the multivariate methodology in spatial continuously indexed process, where it is nec-
essary to pay more attention to local differences among spatial neighborhood and to integrate the
spatial properties to outlierness measurement (see, Lu et al., 2003). Thus, in this area of functional
spatial data, the multivariate approach is very limited and it is inadequate to analyze such type of
process. So, we can say that the current work is not a simple adaptation, to the functional case,
of the multivariate study of Gheriballah et al. (2010), but, it is a structural development allows
us to avoid the influence of all these defects by keeping the functional feature of the original data.
Recently, the functional spatial data has been modeled by two fundamentals regression analysis
tools such the cokriging method (see, Nerini et al., 2010) and the nonparametric regression (see,
Dabo-Niang and Thiam, 2010) but, it is well known that our robust method has more advantages
than the above cited methods by its outlier-resistance properties. In conclusion, we can say that the
nonparametric robust analysis in functional spatial data is an important analysis tool and has great
impact in practice. Such approach is more adapted than, the multivariate one, for the data collected
with continuous monitoring in spatial order and it is better than the nonparametric regression for the
functional spatial data affected by some outliers. It should be noted that most of these case can be
treated as particular cases of our study. This generality of our model is discussed in the following
Section by giving the formulation of our result for some special case.

• Some applications

- Application to continuous random fields: As noticed above, the continuously indexed random
filed is the most important example of functional spatial data. Indeed, let (Zt)t∈IRN be an IR-
valued strictly stationary random spatial processes assumed to be bounded and observed over
some subset I ⊂ IRN . Our approach can be used to predict the value Zs0 at an unobserved
location s0 < I by taking into account, the observed part of (Zt∈I) in its continuous form. For
this, we suppose that, the value of Zs0 depends only on the values of the process (Zt) in a bounded
neighborhoodVs0 ⊂ I of s0. From Zt we may construct m functional spatial random variables as
follows: Consider some grid Gn = {ti = (ti,1, . . . ti,N) ∈ I, 1 ≤ ti, j ≤ n j, j = 1, . . . ,N, i = 1, . . . ,m}
such that

∀ i = 1, . . .m min
1≤ j≤N−1

(ti, j+1 − ti, j) ≥ C > 0, for some constant C

and we define

∀ i = 1, . . . ,m, Xti = (Zt, t ∈ Vti ),

where Vti = V + tti with V = Vs0 − s0. So, the predictor that we proposed (see Biau and
Cadre (2004), Dabo-Niang and Yao (2007) for the finite dimension mean regression case), aims
to evaluate a real characteristic denoted Ys0 = Zs0 , at a site s0, given Xs0 = (Zt, t ∈ Vs0 ). The
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random variable θ̂(Xs0 ), is is the best approximation of the quantity Ys0 , with respect to the loss
function ρx(t) =

∫ t
0 ψx(s)ds. The latter is given by using the m pairs of r.v (Xti ,Yti )ti with Yti = Zti .

- Application to conditional confidence curve: An important application of the asymptotic normal-
ity result is the building of confidence intervals for the true value of θ given curve X = x. A
plug-in estimate for the asymptotic standard deviation σ(x, θ(x)) can be obtained using the esti-
mators λ̂2(x, θ̂(x)) and Γ̂1(x, θ̂(x)) of λ2(x, θ(x)) and Γ1(x, θ(x)) respectively. We get σ̂(x, θ̂(x)) :=
[β̂2λ̂2(x, θ̂(x))/{(β̂1)2Γ̂1

2
(x, θ̂(x))}]1/2. Then σ̂(x, θ̂(x)) can be used to get the following approxi-

mate (1 − ζ) confidence interval for θ(x)

θ̂(x) ± t1− ζ
2
×

 σ̂2
(
x, θ̂(x)

)
nϕx(h)


1
2

,

where t1−ζ/2 denotes the 1 − ζ/2 quantile of the standard normal law.

Here we point out that the estimators λ̂2(x, θ̂(x)) and Γ̂1(x, θ̂(x)) are calculated, for x ∈ A, in the
same way as in (2.2). We estimate β1 and β2 empirically by

β̂1 =
1

n̂ϕx(h)

∑
i∈In

Ki(x) and β̂2 =
1

n̂ϕx(h)

∑
i∈In

K2
i (x),

where Ki(x) are defined as before.
This last estimation is justified because under (H1), (H5) and (H6), we have

1
ϕx(h)

IE
[
K j

1

]
→ β j, j = 1, 2.

Note that the function ϕx(·) does not appear in the calculation of the confidence interval by sim-
plification. Finally, the approximate (1 − ζ/2) confidence interval, for any x ∈ A, is

[a−(x), a+(x)], where a±(x) = θ̂(x) ± t1− ζ
2
×


∑

i∈In K2
i (x)λ̂2

(
x, θ̂(x)

)
(∑

i∈In Ki(x)
)2
Γ̂1

2 (
x, θ̂(x)

)


1
2

.

• Some particular cases:

- The multivariate case: In the vectorial case, when F = IRp, p ≥ 1 and if the probability density
of the random variable X (resp. the jointly density of (Xi, X j)) denoted by f (resp. by fi, j), is of
C1 class, then ϕx(h) = O(hp). Then, the conditions (H1), (H2) and (H4) are trivially verified with
βx(t) = f (x)tp. Thus, our Theorem leads systematically to the next Corollary,

Corollary 2. Under assumptions (H3), (H5)∼(H7), we have:(
n̂hp

σ2(x, θ(x))

) 1
2 (
θ̂(x) − θ(x)

) D→ N(0, 1), as n→ ∞.

We point out that this result is exactly what is obtained by Gheriballah et al. (2010)
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- The functional time series case: In this situation (N = 1), the conditions (2.4) is automatically
verified. Therefore, we obtain the following result which is exactly the same as obtained by
Attouch et al. (2010)

Corollary 3. Under assumptions (H1)∼(H7), we have:(
nϕx(h)

σ2(x, θ(x))

) 1
2 (
θ̂(x) − θ(x)

) D→ N(0, 1), as n→ ∞.

5. Appendix

Proof of results

We first state the following lemmas which can be found in Tran (1990). They are needed for the strong
convergence of our estimates. There proofs will then be omitted.

Lemma 4.

(i) Suppose that (2.3) holds. Denote by Lr(F ) the class of F -measurable r.v.’s X satisfying ∥X∥r =
(IE|X|r)1/r < ∞. Suppose X ∈ Lr(B(E)) and X ∈ Lr(B(E

′
)). Assume also that 1 ≤ r, s, t < ∞

and r−1 + s−1 + t−1 = 1. Then

|IE[XY] − IE[X]IE[Y]| ≤ C∥X∥r∥Y∥s
{
s(Card(E),Card(E′))φ(dist(E, E′))

} 1
t . (5.1)

(ii) For r.v.’s bounded with probability 1, the right-hand side of (5.1) can be replaced by Cs(Card(E),
Card(E′))φ(dist(E, E′)).

We need, also, the following lemma.

Lemma 5. Let Z1, . . . ,Zn be a random vector such that |IE ∏n
s=i Zs| < ∞, i = 1, . . . , n − 1, |Zi| ≤ C,

i = 1, . . . , n. Then∣∣∣∣∣∣∣IE
n∏

s=1

Zs −
n∏

s=1

IEZs

∣∣∣∣∣∣∣ ≤
n−1∑
i=1

n∑
j=i+1

∣∣∣∣∣∣∣∣IE(Zi − 1)(Z j − 1)
n∏

s= j+1

Zs − IE(Zi − 1)IE(Z j − 1)
n∏

s= j+1

Zs

∣∣∣∣∣∣∣∣ .
Proof: (Lemma 1) Clearly, for all ε < 1, we have

IP
{
Ψ̂D(x) = 0

}
≤ IP

{
Ψ̂D(x) ≤ 1 − ε

}
≤ IP

{∣∣∣∣Ψ̂D(x) − 1
∣∣∣∣ ≥ ε} .

It now suffices to show that

Ψ̂D(x) − 1→ 0 in probability. (5.2)

Because IE[Ψ̂D(x)] = 1, all it remains to show that the variance term tends to 0. For this, we write

Ψ̂D(x) − IE
[
Ψ̂D(x)

]
=

1
n̂IE [K1(x)]

∑
i∈In

∆i(x)
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and

Var
[
Ψ̂D(x)

]
= Var

 1
n̂IE [K1(x)]

∑
i∈In

∆i(x)

 = 1
n̂2IE2 [K1(x)]

∑
i,j∈In

∣∣∣Cov(∆i(x),∆j(x))
∣∣∣ .

Let Qn =
∑

i∈In Var[∆i(x)] and Rn =
∑

i,j∈In |Cov(∆i(x),∆j(x))|. By Assumptions (H1) and (H2), we
have

Var[∆i(x)] ≤ C
(
ϕx(h) + (ϕx(h))2

)
,

therefore

Qn = O (n̂ϕx(h)) .

Concerning Rn we introduce the following sets:

S 1 = {i, j ∈ In : 0 < ∥i − j∥ ≤ cn} , S 2 = {i, j ∈ In : ∥i − j∥ > cn} ,

where cn is a real sequence that converges to +∞ and will be precise after. Split this sum into two
separate summations over sites in S 1 and S 2

Rn =
∑

(i,j)∈S 1

∣∣∣∣Cov
(
∆i(x),∆j(x)

)∣∣∣∣ + ∑
(i,j)∈S 2

∣∣∣∣Cov
(
∆i(x),∆j(x)

)∣∣∣∣
= R1

n + R2
n.

On one hand, we have:

R1
n =

∑
(i,j)∈S 1

∣∣∣∣IE [
KiKj

]
− IE [Ki] IE

[
Kj

]∣∣∣∣
≤ Cn̂cN

n ϕx(h)
(
(ϕx(h))

1
a + ϕx(h)

)
≤ Cn̂cN

n ϕx(h)
a+1

a .

On the other hand, we have

R2
n =

∑
(i,j)∈S 2

|Cov (∆i,∆j)| .

As the random variables Kj are bounded, we deduce from Lemma 4 (ii) that

|Cov (∆i,∆j)| ≤ Cφ (∥i − j∥) ,

thus

R2
n ≤ C

∑
(i,j)∈S 2

φ (∥i − j∥) ≤ Cn̂
∑

i:∥i∥≥cn

φ (∥i∥)

≤ Cn̂c−Na
n

∑
i:∥i∥≥cn

∥i∥Na φ (∥i∥) .
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Let cn = (ϕx(h))−1/Na, then we have

R2
n ≤ Cn̂c−Na

n

∑
i:∥i∥≥cn

∥i∥Na φ (∥i∥)

≤ Cn̂ϕx(h)
∑

i:∥i∥≥cn

∥i∥Na φ (∥i∥) .

Because of (2.5) and (H2) we get

R2
n ≤ Cn̂ϕx(h).

Furthermore, under this choose of cn we have

R1
n ≤ Cn̂ϕx(h).

Hence

Var

∑
i∈In

∆i(x)

 = O (n̂ϕx(h))

which imply that

Var
[
Ψ̂D(x)

]
→ 0.

�
Proof: (Lemma 2)

It is easy to see that √
n̂ϕx(h)

(
Ψ̂N(x, z) − IE

[
Ψ̂N(x, z)

])
=

1
√

n̂

∑
i∈In

Λi,

where

Λi =

√
ϕx(h)

IE[K1]
{
Kiψx(Yi, z) − IE

[
Kiψx(Yi, z)

]}
.

Thus, the asymptotic normality of (
√

n̂σ(x, θ(x)))−1 ∑
i∈In Λi is sufficient to show the proof a

Lemma 2. This last is shown by the blocking method, where the random variables Λj are grouped into
blocks of different sizes defined by

W(1,n, j) =
jk(pn+qn)+pn∑
ik= jk (pn+qn )+1,

k=1,...,N

Λi,

W(2,n, j) =
jk(pn+qn)+pn∑
ik= jk (pn+qn )+1,

k=1,...,N−1

( jN+1)(pn+qn)∑
iN= jN (pn+qn)+pn+1

Λi,

W(3,n, j) =
jk(pn+qn)+pn∑
ik= jk (pn+qn )+1,

k=1,...,N−2

( jN−1+1)(pn+qn)∑
iN−1= jN−1(pn+qn)+pn+1

jN (pn+qn)+pn∑
iN= jN (pn+qn)+1

Λi,

W(4,n, j) =
jk(pn+qn)+pn∑
ik= jk (pn+qn )+1,

k=1,...,N−2

( jN−1+1)(pn+qn)∑
iN−1= jN−1(pn+qn)+pn+1

( jN+1)(pn+qn)∑
iN= jN (pn+qn)+pn+1

Λi,
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and so on. The last two terms are

W
(
2N−1,n, j

)
=

( jk+1)(pn+qn)∑
ik= jk (pn+qn )+pn+1,

k=1,...,N−1

jN (pn+qn)+pn∑
iN= jN (pn+qn)+1

Λi,

W
(
2N ,n, j

)
=

( jk+1)(pn+qn)∑
ik= jk (pn+qn )+pn+1,

k=1,...,N

Λi,

where qn = o([n̂ϕx(an)(1+2N)]1/(2N)) and pn = [(n̂ϕx(h))1/(2N)/sn] with sn = o([n̂ϕx(h)(1+2N)]1/(2N)q−1
n ).

Noting that, by (H7) we can show all sequences qn, pn and sn tend to infinity.
Now, we define for each integer i = 1, . . . , 2N ,

T (n, i) =
∑
j∈J

W(i,n, j).

where J = {0, . . . , r1 − 1} × · · · × {0, . . . , rN − 1} with rk = nk(pn + qn)−N . Then, we have

√
n̂ϕx(h) [σ(x, θ(x))]−1

(
Ψ̂N(x, z) − IE

[
Ψ̂N(x, z)

])
=

[√
n̂σ(x, θ(x))

]−1
T (n, 1) +

2N∑
i=2

T (n, i)

 .
Therefore, it suffices to proof

the asymptotic normality of :
[√

n̂σ(x, θ(x))
]−1

(T (n, 1)) (5.3)

and

the convergence in probability of :
√

n̂−1

 2N∑
i=2

T (n, i)

 . (5.4)

Firstly, we begin by proving (5.4). Clearly it is sufficient to show that

n̂−1IE

 2N∑
i=2

T (n, i)


2

→ 0.

We have

n̂−1IE

 2N∑
i=2

T (n, i)


2

= n̂−1

 2N∑
i=2

IE [T (n, i)]2 +
∑

i, j=2,...,2N , i, j

IE
[
T (n, i)T (n, j)

] .
By Cauchy-Schwartz inequality, we get:

∀ 2 ≤ i ≤ 2N : n̂−1IE
[
T (n, i)T (n, j)

] ≤ (
n̂−1IE [T (n, i)]2

) 1
2
(
n̂−1IE

[
T (n, j)

]2
) 1

2 .

Then, all what is left to be shown is to prove that

n̂−1IE [T (n, i)]2 → 0; ∀ 2 ≤ i ≤ 2N . (5.5)
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We will only prove (5.5) for i = 2, the others case is very similar. Analogously to Lemma 1, we
enumerate W(2,n, j) in the arbitrary way Ŵ1, . . . , ŴM , and we write

E [T (n, 2)]2 =

M∑
i=1

Var
[
Ŵi

]
+

M∑
i=1

M∑
j=1, i, j

Cov
(
Ŵi, Ŵ j

)
= A1 + A2.

For the variance term we have

Var
[
Ŵi

]
= Var


pn∑

ik=1,
k=1,...,N−1

qn∑
iN=1

Λi


= pN−1

n qnVar [Λi] +
pn∑

ik=1,
k=1,...,N−1

qn∑
iN=1

pn∑
jk=1,

k=1,...,N−1, i,j

qn∑
jN=1

IE
[
ΛiΛj

]
.

It is shown in Lemma 1 in Attouch et al. (2009) that

Var[Λ1]→ (σ(x, θ(x)))2. (5.6)

Moreover, employing Lemma 4, to get, under (H4),∣∣∣EΛiΛj
∣∣∣ ≤ Cϕx(h)−1φ (∥i − j∥) . (5.7)

Therefore, we deduce that

Var
[
Ŵi

]
≤ CpN−1

n qn

1 + ϕx(h)−1
pn∑

ik=1,
k=1,...,N−1

qn∑
iN=1

(φ (∥i∥))


≤ CpN−1

n qnϕx(h)−1
pn∑

ik=1,
k=1,...,N−1

qn∑
iN=1

(φ(∥i∥) .

Therefore

n̂−1A1 ≤ CMpN−1
n qnn̂−1ϕx(h)−1

∞∑
i=qn

iN−1φ(i) .

The definitions of M and pn permit to get

CMpN−1
n qnn̂−1ϕx(h)−1 = n̂ (pn + qn)−N pN−1

n qnn̂−1ϕx(h)

≤
(

qn

pn

)
ϕx(h)−1

= qnsn (n̂ϕx(h))
−1
2N ϕx(h)−1

= qnsn
(
n̂ϕx(h)(1+2N)

) −1
2N .
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Using the fact that sn = o([n̂ϕx(h)(1+2N)]1/(2N)q−1
n ) it is easy to see that the last term of (5.8) converges

to→ 0. Furthermore, by (2.5) with δ > N (see, hypothesis (H2)) we show also that

∞∑
i=1

iN−1φ(i) < ∞.

Finally, we deduce that

n̂−1A1 → 0.

We now proceed to evaluate A2. A simple computation shows that the sites of random variables Λi
involved in two variables Ŵi and Ŵ j with i , j are far apart by distant of qn at least. So, by covariance
inequality in a spatial mixing variables (see, Lemma 4) we get

A2 ≤
nk∑

jk=1,
k=1,...,N

nk∑
ik=1,

k=1,...,N∥i−j∥>qn

EΛiΛj

≤ Cϕx(h)−1n̂
nk∑

ik=1,
k=1,...,N∥i∥>qn

φ(∥i∥)

and

n̂−1A2 ≤ Cϕx(h)−1
∞∑

i=qn

iN−1φ(i).

Observe that

ϕx(h)−1
∞∑

i=qn

iN−1φ(i) ≤ ϕx(h)−1
∞∑

i=qn

iN−1−δ ≤ ϕx(h)−1
∫ ∞

qn

tN−1−δdt = Cϕx(h)−1qN−δ
n .

This latter goes to 0 by means of (H7) and the definition of qn. So, we get

n̂−1A2 → 0.

This completes the proof of (5.4).
Secondly, to prove the asymptotic normality (5.3) it is sufficient to show the three claim

Q1 ≡

∣∣∣∣∣∣∣∣IE [
exp [iuT (n, 1)]

] − rk−1∏
jk=0, k=1,...,N

IE
[
exp

[
iuW(1,n, j)

]]∣∣∣∣∣∣∣∣→ 0, (5.8)

Q2 ≡ n̂−1
∑
j∈J

IE
[
W(1,n, j)

]2
→ (σ(x, θ(x)))2 (5.9)

and

Q3 ≡ n̂−1
∑
j∈J

IE

(W(1,n, j))21{
|W(1,n,j)|>ϵ((σ(x,θ(x)))2n̂)

1
2

}
→ 0, for all ϵ > 0. (5.10)
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�

Proof: (Equation (5.8)) The proof of (5.8) is based on the Lemma 5 to the variable (exp(iuW̃1), . . . ,
exp(iuW̃M)) where W̃1, . . . , W̃M are the random variables W(1,n, j)j∈J enumerated in the arbitrary
way. As |∏M

s= j+1 exp[iuW̃s]| ≤ 1, then

Q1 =

∣∣∣∣∣∣∣∣IE [
exp [iuT (n, 1)]

] − rk−1∏
jk=0, k=1,...,N

IE
[
exp

[
iuW(1,n, j)

]]∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣IE
 rk−1∏

jk=0, k=1,...,N

exp
[
iuW(1,n, j)

] − rk−1∏
jk=0, k=1,...,N

IE
[
exp

[
iuW(1,n, j)

]]∣∣∣∣∣∣∣∣
≤

M−1∑
k=1

M∑
j=k+1

∣∣∣∣∣∣∣∣IE
(
exp

[
iuW̃k

]
− 1

) (
exp

[
iuW̃ j

]
− 1

) M∏
s= j+1

exp
[
iuW̃s

]

−IE
(
exp

[
iuW̃k

]
− 1

)
IE

(
exp

[
iuW̃ j

]
− 1

) M∏
s= j+1

exp
[
iuW̃s

]∣∣∣∣∣∣∣∣
=

M−1∑
k=1

M∑
j=k+1

∣∣∣∣IE (
exp

[
iuW̃k

]
− 1

) (
exp

[
iuW̃ j

]
− 1

)
− IE

(
exp

[
iuW̃k

]
− 1

)
IE

(
exp

[
iuW̃ j

]
− 1

)∣∣∣∣
×

∣∣∣∣∣∣∣∣
M∏

s= j+1

exp
[
iuW̃s

]∣∣∣∣∣∣∣∣
≤

M−1∑
k=1

M∑
j=k+1

∣∣∣∣IE (
exp

[
iuW̃k

]
− 1

) (
exp

[
iuW̃ j

]
− 1

)
− IE

(
exp

[
iuW̃k

]
− 1

)
IE

(
exp

[
iuW̃ j

]
− 1

)∣∣∣∣ .
Let Ĩ j be the set of sites such that W̃ j =

∑
i∈Ĩ(1,n,j)Λi. Since the sets Ĩ1≤ j≤M contains pN

n sites, we have
by Lemma 4, under (2.3)∣∣∣∣IE (

exp
[
iuW̃k

]
− 1

) (
exp

[
iuW̃ j

]
− 1

)
− IE

(
exp

[
iuW̃k

]
− 1

)
IE

(
exp

[
iuW̃ j

]
− 1

)∣∣∣∣ ≤ Cφ
(
d
(
Ĩ j, Ĩk

))
pN

n .

Hence

Q1 ≤ CpN
n

M−1∑
k=1

M∑
j=k+1

φ
(
d
(
Ĩ j, Ĩk

))
≤ CpN

n M
M∑

k=2

φ
(
d
(
Ĩ1, Ĩk

))
≤ CpN

n M
∞∑

i=1

∑
k:iqn≤d(Ĩ1,Ĩk)<(i+1)qn

φ
(
d
(
Ĩ1, Ĩk

))
≤ CpN

n M
∞∑

i=1

iN−1φ(iqn).
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It follows from (2.5) that

Q1 ≤ Cn̂q−δn

∞∑
i=1

iN−1−δ.

The convergence result (5.8) is consequence of (H7) and the definition of qn. �

Proof: (Equation (5.9)) On the one hand

n̂−1IE [T (n, 1)]2 = n̂−1
rk−1∑

jk=0, k=1,...,N

IE
[
W (1, n, j)

]2

+ n̂−1
rk−1∑

jk=0, k=1,...,N

rk−1∑
ik=0, k=1,...,N

ik, jk for some k

Cov[W(1,n, j),W(1,n, i)].

By the same arguments as those used for A2, this last term tend to zero. Hence, the limit in (5.9) is
equal to the limit of n̂−1E (T (n, 1))2. However, recall that

S n :=
2N∑
i=1

T (n, i) = T (n, 1) + S
′′

n,

where S
′′
n =

∑2N

i=2 T (n, i). Therefore

n̂−1IE [T (n, 1)]2 = n̂−1IE
[
S 2

n

]
+ n̂−1IE

[
S
′′

n

]2 − 2n̂−1IE
[
S nS

′′

n

]
.

It is shown in (5.5) that n̂−1IE[S
′′
n

2]→ 0. Moreover, by Cauchy-Schwartz’s inequality, we can write:∣∣∣∣n̂−1IE
[
S nS

′′

n

]∣∣∣∣ ≤ n̂−1IE
∣∣∣S nS

′′

n

∣∣∣ ≤ (
n̂−1IE [S n]2

) 1
2
(
n̂−1IE

[
S
′′

n

]2
) 1

2
.

Thus, all what it remains to compute is the limit of n̂−1IE [S n]2 which can be writhen

n̂−1IE [S n]2 = n̂−1Var
[
S 2

n

]
= n̂−1

∑
i

Var [Λi] +
∑
i,j

Cov
[
Λi,Λj

] .
As indicated in (5.6) the variance term is

Var[Λ1]→ σ(x, θ(x))2.

Let us evaluate the covariance term. Reasoning as in Lemma 1 we consider

E1 = {i, j ∈ In : 0 < ∥i − j∥ ≤ cn} ,
E2 = {i, j ∈ In : ∥i − j∥ > cn} ,

where cn is a sequence of integers that converges to infinite and that will be precise after.
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Now, we write ∑
i,j

Cov
[
Λi,Λj

]
=

∑
(i,j)∈E1

Cov
[
Λi,Λj

]
+

∑
(i,j)∈E2

Cov
[
Λ1,Λj

]
.

For the first sum on E1, proceeding as in (R1
n) in Lemma 1, we get from the definition of Λi∣∣∣∣Cov

[
Λi,Λj

]∣∣∣∣ ≤ C
(
ϕx(h) + (ϕx(h))

1
a

)
≤ C(ϕx(h))

1
a .

It follows that, ∑
E1

Cov
(
Λi,Λj

)
≤ Cn̂cN

n ϕx(h)
1
a .

Next, on E2 we apply Lemma 4, once again similarly to (5.7), we write that:∣∣∣∣Cov
(
Λi,Λj

)∣∣∣∣ ≤ Cϕx(h)−1φ (∥i − j∥)

and ∑
E2

Cov
(
Λi,Λj

)
≤ Cϕx(h)−1

∑
(i,j)∈E2

φ (∥i − j∥)

≤ Cn̂ϕx(h)−1
∑

i:∥i∥>cn

φ (∥i∥)

≤ Cn̂ϕx(h)−1c−δn

∑
i:∥i∥>cn

∥i∥δφ (∥i∥) .

Finally, we have:

∑
Cov

(
Λi,Λj

)
≤

Cn̂cN
n ϕx(h)

1
a +Cn̂ϕx(h)−1c−δn

∑
i:∥i∥>cn

∥i∥δφ (∥i∥)
 .

Let cn = ϕx(h)−α for some (δ)−1 < α < (Na)−1, then we have:

∑
Cov

(
Λi,Λj

)
≤

Cn̂ϕx(h)−αN+ 1
a +Cn̂ϕx(h)αδ−1

∑
i:∥i∥>cn

∥i∥δφ (∥i∥)
 .

Hence, we obtain that ∑
Cov

(
Λi,Λj

)
= o (n̂) .

In conclusion, we have

n̂−1
∑
j∈J

E
[
W(1,n, j)

]2 → σ2(x, θ(x)), when n→ ∞.

�
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Proof: (Equation (5.10)) Because |Λi| ≤ Cϕx(h)−1/2, then |W (1,n, j)| ≤ CpN
n ϕx(h)−1/2. Thus

Q4 ≤ Cp2N
n ϕx(h)−1n̂−1

rk−1∑
jk=0, k=1,...,N

IP
[
|W (1,n, j)| > ϵ

(
(σ(x, θ(x)))2 n̂

) 1
2
]
.

Since pn = [(n̂ϕx(h))1/(2N)/sn] and sn → ∞ then

|W (1,n, j)| /
((

(σ(x, θ(x)))2n̂
) 1

2
)
≤ CpN

n (n̂ϕx(h))−
1
2

= C (sn)−N → 0.

So, for all ϵ and j ∈ J ; if n is great enough, we have
IP[W(1, n, j) > ϵ(σ(x, θ(x)))2n̂)1/2] = 0. Then Q4 = 0 for n great enough. This yields the proof. �

Proof: (Lemma 3) Clearly by the equiprobability of the couples (Xi,Yi) we have

IE
[
Ψ̂N(x, z)

]
=

1
IE[K1(x)]

IE
[
K1(x)ψx(Y, z)

]
=

IE
{
K1(x)

[
IE[ψx(Y, z)|X1] − IE[ψx(Y, θ(x))|X = x]

]}
IE[K1(x)]

=
IE

{
K1(x)

[
IE[ψx(Y, z)|X1] − IE[ψx(Y, z)|X = x]

]}
IE[K1(x)]

+ IE[ψx(Y, z)|X = x] − IE[ψx(Y, θ(x))|X = x]

=: I1 + I2. (5.11)

For I1(x) we use (H2) to write,

K1(x) |IE[ψx(Y, z)|X1] − IE[ψx(Y, z)|X = x]| ≤ ChbK1(x)

which gives

I1 = O
(
hb

)
.

Concerning I2 we use a Taylor expansion to get, under (H1′) and (H4′)

I2 = u
[
nϕx(h)

]− 1
2 σ(x, θ(x))

∂

∂t
Ψ(x, θ(x)) + o

([
nϕx(h)

]− 1
2

)
.

The result is then a consequence of (5.11). �
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