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Abstract

This paper gives a rigorous proof of an asymptotic result about
bias and variance for a transformation-based nonparametric regression
estimator proposed by Park et al (1995).
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1. INTRODUCTION

There have been many proposals for obtaining convergence of order O (n~%/°)
in nonparametric regression problems. Those include fourth order kernels, lo-
cal quadratic or cubic smoothing (e.g. Cleveland and Devlin, 1988, Ruppert
and Wand, 1994, Cleveland and Loader, 1995, Fan and Gijbels, 1995), double
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smoothing and a multiplicative bias correction (Jones, Linton and Nielsen,
1995).

Park el al. (1995) proposed two versions of a simple type of transfor-
mation approach as alternatives to these existing methods. To be brief, the
methods start with transforming the design space by an ordinary nonpara-
metric regression estimates, and then repeat the nonparametric regression on
the transformed design space. The final estimators are obtained by trans-
forming this second stage estimators back to the original design scale. The
two versions differ in ways of putting kernel weights on the transformed data
set at the second stage. The first one makes the kernel weights depend on the
transformed scale, but the second on the original one. Further details and
motivations for these methods can be found in Park et al (1995).

Although Park et al (1995) proposed both of the two versions in their
paper, they concentrated on the second one and presented theory and practice
for this version only. That is largely due to its advantages over the first.
Nevertheless, the theory for deriving the asymptotic properties of the first
version turns out to be more involved than the second, and it could be a useful
tool for future theoretical development in this area. Thus, we believe that it
is still worthy of publication. In this paper, we present a detailed proof for the
theoretical properties of the first version. In Section 2, we briefly outline the
method with an illustrative example, and introduce various notations along
with the technical result. Section 3 is devoted to the proof.

2. THE ESTIMATOR

The basic regression model is written as
Yi = m(z;) + €

where 0 < z; < z9 < ... < z, < 1 are the fixed design points, ¢;’s are indepen-
dent and identically distributed with mean zero and variance 2. In fact, the
common variance assumption can be lifted, i.e., 0?(z;) can be accomodated,
by introducing a little complication in the asymptotic arguments.

The idea involves a transformation of the design variable z. Let ¢, = m(z;)
and suppose the z — t transformation were available. Then, a suitable
nonparametric regression of Y; on t; should be unbiased because of the linear
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relationship. This motivates us to consider the following two stage procedure
:using a basic nonparametric tool (i) regress {Y;} on {z;} to give m, (ii)
regress {Y;} on {m,(z;)} using bandwidth h. The final estimator 7, ,(z) is
the latter estimator evaluated at r,(z).

The basic nonparametric regression tool that Park et al (1995) used is
the kernel weighted local linear regression (e.g. Cleveland, 1979, Fan, 1992,
Hastie and Loader, 1993). To get explicit formula for m,,(z), let K, () =
h~ 'K (h~!.) for any kernel function K. Set P,(z) = z*,

_IZ Pg (.’ZZ—-IBz)

and wy(z) = s¢(z)/{s0(z)sa(z) — s?(z)}. Note that, according to the conven-
tions of K, and P,, we mean b~ !(z/b)*K (z/b) by writing (P,K ),(z). Then
the stage (i) estimator based on the raw data will be m,(z) where m,(z) is
the value of ag when ag and a; are chosen to minimise

n

Z(Yi —ag—ai(z — z:))2 K, (z — z).

i=1
Explicitly, we can write

m _IZY{wz VKo(z — ) — wi(z)(PiK )s(z — 24)}

Now let t = m(z) as well as t; = m(z;), and also { = rh,(z) and t; =
7 (_’)( ;), where the (—:) superscript refers to the version of 7, based on all
the data except (z;,Y;). Let

—IZPZL (t—t)

i=1

for some other kernel L and bandwidth £, and
Se(z) = n S (PL)a(E - L).
i=1
Also write W,(z) = Sy(z)/{So(z)S2(z) — S?(z)} and likewise define W(z) us-

ing ﬁe(m) Then, repeating the local linear estimation step on the transformed
data for stage (ii), yields the overall estimator m, ,(z) given by

Fupn (2 —n_IZY{Wg YLn(E = £:) — Wy (2)(PLL)s (F — £)). (2.1)
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The technical assumptions that are made throughout the asymptotic ar-
guments are :

(i) the “design density” f satisfies [5* f(z)dz = (2¢ — 1)/2n;
(i) 0 <z < 1

(iii) f and m have bounded continuous fourth derivatives;
(iv) m is monotone;

(v) K and L are infinitely differentiable bounded symmetric probability den-
sity functions such that

/[z]kK(x)dx < 00, /|a:|kL(a:)da: <oo; k=1,2,...

(vi) h — 0 and nh” — 00 as n — 00, and b/k — r (# 0,00).

Write p,(K) = [2'K (z)dz. Under assumptions (i) to (vi), the estimator
m, »(z) admits the following asymptotic expression:

(@) —m(z) = (nh) 2o {po((L + K — K * L)")m(z)/ f ()} 2,

+C(z)h* + o, (h* + (nh)~1?). (2.2)
Here,

0tw) = Spma(Rpua(n) DI L),

K(-) = K.mi(z)(-), * denotes convolution and Z, —, N(0,1). A rigorous
proof of (2.2) is given in the next section.

We conclude this section by applying the method to a real data, the
motorcycle impact data of Schmidt, Mattern and Schueler (1981), popularized
by, among others, Hardle (1990). The data are plotted in Figure 1. An
unreported application of 7, , with b = h = 14 gave a smooth which is
inadequate both in the flat region towards to the left and near the main
trough in the data, and quite possibly elsewhere as well. The reason for this
turns out to be a particular form of non-monotonicity: the existence of two
rather flat regions of similar heights in different parts of the design space.
The method confuses information from the two areas so, far from improving
matters, the second stage estimation spoils the smooth. One way round this
is to smooth less at the pilot stage than at the final one. The much improved
estimator resulting when b = 6 and & = 24 is displayed in Figure 1.

(2.3)
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3. LEMMAS AND PROOFS

We will suppress £ and ¢ below whenever there is no room for confu-
sion. We first mention a useful fact about the convolution operator. If f has
smoothness of order r, i.e. »r = [ + o where [ is a positive integer, 0 < o < 1
and

1fO(2) = fOy)l < Mle —y|*, for M > 0 and all z,y,
then [
K f =3 u(K)(=h)fO/i1+ 0.
i=0
Also, let g be the design density of ¢;,...,t, in the same sense as f is the
design density of z,...,z,.

Lemma 1. (Approzimation of s, and S,.)

 wm(K)f + s (K) /2 4+ O(b* + (nb)™!) if 1 is even,
L —bu 1 (K)f' + O(b% + (nb)1) if 1 is odd.

Also, S, is the same as s; except that L, h, g and t replace K, b, f and «z,
respectively.
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Proof. By integral approximation, we have
si= (PK)y* f +O0((nb)™"),

and the result follows from the above fact about convolutions.
Lemma 2. (Approzimation of w, and W,.)

- — —bf'/f2 + O(b® + (nb)™ 1) =1,

T U BB - 3£ PO+ (b)) 1=2.
Also, W, is the same as w; except that L, k, g and t replace K, b, f and =z,
respectively.
Proof. From Lemma 1,
1 _

s08y — 83 = paf’ + 6 {-2'(#% +ua)f " - u%(f')2} +0(b* + (nb)™h)

with g2 = po(K) and pg = pa(K). Therefore,

1
(%@—ﬁr%:@ﬁ%*b—¥{¢m+u;MﬁWf—muvmﬂ}

+0(b* + (nb) ™).

Multiplying this by s; and s, in Lemma 1 gives w; and wy, respectively, in
the lemma.

Write 7, (t) = n 2 50, Yi{Wa(t) L, (t — t;) — W1(t)(P1L)n(t — t)}.

Lemma 3. (Approzimation of m, and 74.)
(a) Let nb® — oco. Then

() = m(e) + e (t) + 7! Xn:Kb(ﬂf —23)(Y; — t;)/f () + O, ((6/n)"?)

j=1

where
cs(t) = Emy(z) — m(z) = %b2u2 (K)m"(z) + O(b* + (nb)™1).

(b) Let nh® — 0o. Then

Fa(t) = Lm0 S0 Lt — £5)(¥; — £5)/9(2) + Oy ((R/m)2).

i=1
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Proof. Note that m,(z) can be written as
fnlz) = wale)n™ ZK( ~ 2,)(m(z;) - m(2))
~ wi(o)n”! ;ZI(PIK)b(m — 2))(m(z;) — m(a))
b wen L Kle =) - mias)

- ‘12 PiK)y(z — ;) (Y; — m(z;))
+ m(z ){wz( ) o(z) — wi(z)si(z)}-
The first two terms are ¢,(t), and can be approximated to O((nb)~!) by
wa () K * {(m — m(2))f}(z) — wi(z)(P1K ), * {(m — m(z))f}(e).

By Lemma 2 and the fact about convolutions, this is equal to
1
S {(mf)" = m ")/ =20 ((mf) = m )/ f*} + O

1
—_ ibngm” + O(b4)

Applying Lemma 2 to the two stochastic terms and by the fact that wase —
wysy = 1, part (a) follows.
For part (b), note that

on ! Zn: Li(t —t;)(t; —t) — Win™! Zn:(PlL)h(t —t;)(t; = t)

i=1

= —~hW251 + th.S'z = 0

Thus we have

r(t) =t + Wan~ ZLh(t ~t;)(Y; — t;) — Win~ 1Z(P1L)h(t t)(Y; — t;),

i=1

which can be approximated as in (a).

223
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Here are two further definitions:

1
f(z)

Ky(z - z,) —f—(i—i)Kb(mi )

’Ub(t,il,‘i, .’Ej) =

V(t,t.l) En_l Z vb(t,x‘tﬂxj)(y;_t])’
JErw ey

and a further fact: if nb® — 0o, Lemma 3 yields
t—ti=t—titclt) — e(ts) + VIt t;) + 0,((b/n)"?).

Also, write A or A, (depending on whether we wish to stress dependence
on !) as shorthand for PL in the following lemmas and let A/ (z) denote
h~'A'(h™!'z) i.e. differentiation first, scaling second.

Lemma 4. Let nh” — 00. Let ¢ be a continuously differentiable function.
Then, for I =0 or 1,

n iAh(i_ t)a(t)(Yi—t) = n"! Xn: An(t—tit e (t) — o (t:))q(t:) (Vi — ta)!

i=1

n

+(nh) 1Y ALt — t)g(t)V (8, t) (Vi — ) + 0, ((nk)"Y?).

i=1

Proof. We only give the proof for the case I = 0, the case I = 1 being
similar. By the formula for ¢ — ¢; and the integral form of Taylor’s theorem,
n Y7 An(t — £;)q(t;) can be approximated by

! iAh(t — i+ o(t) — e (t:))q(t:)

+(nh)! anAg(t —ti + c(t) — o (t:))q(t)V (¢, t:) (3.1)

i=1
with remainder bounded by

C(nh*)! an V3(t,t.) = 0,((nbh®)™1)
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for some C > 0. For the second term of (3.1), note that
(nh) ™3 {AL(E — ti + () — alts) — AL(t — t)} a(t)V (¢t t:)
i=1
has mean zero and variance
ZZ(nh Z {A t—t +cb()—cb(t,~))
i=1,i#j
— A4t — t)}a(t)us (8, 24, 25))
This variance can be approximated by
7t [ =y + eolt) - o)) - 44— 1)
ji=1
xv(t,m ™ (v), 7;)q(v)9 (v)dy]’. (3.2)

Since |v,| = O(b7!) and
[ =+ a(t) - @) - 44t~ vla@olw)dy = OF),
(3.2) is O((nh?)~14?).
Lemma 5. (Approzimation of S;.) Let nh” — oco. Then
S, =8+ B, + Vi + o, (R* + (nk)~V/?)

where

B, = —%62h2m+2{(c2g) — o™} + 2 (=1) mg(c,)? if Uis even,
b b hpi1{(cag)” — cag”} if | is odd,

where u, = (L), ¢ = ca(t) = Fu2(K)m"(z) and

Vi = (k) (A (¢ — £V (6, 1),

i=1

Proof. By Lemma 4, we only need to show that

n! i:(Al)h(t — b+ e (t) — (t:)) — S; = B, + o(h?).

225
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The left-hand side can be written as
2 n
> {(nhj)_1 S (AP (t = ti) (e (t) — es(t:))? /4! } +o(h?),
j=1 i=1
the leading term of which is approximated by

2

ST RT(AY, « {(eo(t) — ) g}(2)/ 5!

j=1

o,

Jn * {(co(t) = ) g} (1) /4!

2
32 () ()" T (ele) = eV g} 0) Gk,

All the terms in powers of b come from the case k = 0, which yields

[

D) =)o/ 100 = =D mDa O O) .

i=1

The b%h and b?h? terms come from the cases (j, k) = (1,1) and (1,2), respec-
tively, which yield
—b*hper (L){(c2(t) — c2)g}"(0)

1

—2—b2h2u[+2 (L){(ca(t) = c2)g}"(¢).

and

Lemma 6. (Order of a stochastic term.) Let q be a continuously differen-
tiable function. Then

(nh)~ ZA (t — t)q(t)V (t,t;) = O, ((nk®)"1/?),
Proof. The left-hand side has mean zero, and its variance is bounded by

202(n2bh2)*1 2“: {n_l i At — ti)q(ti)} (Kz)b(a: — xj)/fz(w)

i=1 i=1,i%]

2
+20*(n*h?) 71 Y {nﬂl > ALt —t)a(t)Ky(zs — %’)/f(ﬂ?i)}

i=1 i=1,i#]
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The first term is O((nb)™!). Approximate the expression in the bracket of
the second term by

K, x {A,(m(z) — m(-))g(m())}(=;),
and this yields O((nh*®)~!) for the second term.
Lemma 7. (Approzimation of W[) Let nh” — 0o. Then

, 1 v v, v,
Wy — Wy = —ejb?h + — g + —2 b+ L0
9

h+ o,(h* + (nh)~1?),
p2(L)g?  pa(L)g? g° » (nk)"")

Wy —W, = Z(—l)'“{_}__;(—l)"(é)j} /9

+ b*h*us(L) {C'z (%gy — (g ))/g C'z'g'/g + C’”/g}

— S =27 —h+o,(h*+ (nk)"V?).

Proof. Note that, by Lemmas 5 and 6, Wl can be written as

W1+ STIW1By — S;'Wi By — WoW;Bg + S7'W1V;
~ S5 YW\ Vy — WoW1 Vg + o, (R* + (nh)™12).

Similarly, W, is approximated by
2
Wa+ S (—1)FWEHIBE — S5 81 W W,y By + 2W1 Wy By — W Vg + 2W W V;

with remainder o, (h* + (nh)~/?). Use Lemmas 1 and 2 to approximate
W’s and S’s and the formulae in Lemma 5 for B’s. Note that all the b
power terms come from ¥2_ (—1)*W}*! B and 6%h? comes from —W3 Bo —
Sq 16, W Wy B,y + 2W W, B;. The desired results are obtained after straight-
forward but cumbersome calculations.

Lemma 8. (Approzimation of quadratic stochastic terms.) Let q be a con-
tinuously differentiable function. Then

nh)le (t = t)a(t)V (¢, L) (¥ — £) = Oy (n ™ h72).
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Proof. Note that the left-hand side has mean zero, and its variance is
bounded by

204 (n*6h%) '3 S(AN (- ) () {(KDu(z - 23)/ (@)

i#j

+(K?)y(2: — 2;)/ £ (2:)}-
The first term is equal to

n

20% (n*6h®) 71 3 (AN (E ~ t)g” (L) [{(K?)s % f(2)}/ £*(2)) + O((nb) ™))

— 204 (n26h%) " (A')? * (947 (8) x O(1) = O((n%6h%) ).

The second term can be written as
204 (n26h%)"H (A2 * (ga2[{(K )y * F(m™)}/ £2(m™ 1) + O ((nb) )](2))
= O((n®bh*)™1).

Lemma 9. (Approzimation of n™* 0, An(t — £.)(Y; — t;).) Let nh” — 0.
Then

_1Z{Ah (£~ t:) — An(t = t) (Vi = t;) = o,((nk)™V/?).

Proof. By Lemmas 4 and 8, n™' 3", A, (¢ — £;)(Y; —t;) can be approximated
by

n! Zn:Ah(t —ti +e(t) — e (t))(Yi — t) (3.3)

i=1
with remainder o, ((nb)~1/2). Now (3.3) is further approximated by

n iAh(t —t:)(Y; ~ ;) + 0, ((nh)™V?)

since

var{(nh) 'p? zn:A;(t — ti)(ca(t) — ca(t:))(Yi — t:) }

= (R S (e ~ )

= (nh’)"'b's 2{( Vi * (ea(t) — e2)*(t) + O((nh) ")}
= O((nh)~'b*).
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Lemma 10. (Approzimation of n™' 0, A, (t — t,)t;.) Let nh” — oco. Then

n—l Xn:{Ah (£ —_ tz) —_ Ah(t — t,)}t.,

[

= no(A) D (=1) Pig{c}} + b*hpi(A){(c29P1)" — ca(gP1)"}

i=1

_%b2h‘2,u2 (A){(ngpl)m — ¢ (gpl)///}
Z(A (t — t)t:V (¢, t:) + 0, (h* + (nh)™1/?).

Proof. Use Lemma 4 and approximate n=' 30, An(t — t; + cp(t) — e (t:))ts
with remainder o(k*) by

n 2 2
D An(t - )t + D e (A)(=h)* > {les(t) — ) gP1/i1} ) kL.

i=1

The b power terms come from the case k = 0, the 4k and b%h? terms from
the cases (j,k) = (1,1) and (1, 2), respectively.

Proposition. Let nh” — oo. Then
ﬁlb,h(m) = m(a:) + C(m)b2h2 + Rn(t) + Op(h,4 n (nh)"”z),

where C(z) is given in (2.3) in Section 2 and

R.(t) = R, (t) + R,,(t) = IZLht—t —t:)/g

+n! i Ln(t —t)V(t,t:)/g
i=1

Proof. The result can be derived from the approximation of

o 1S L —£)Ys and Win 'Y (AL (E - £)Ys
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First note that Wan=! 3>, L, (f — £;)Y; can be written as
o VY Lt — )Y+ Wor S {Ln(f — ) — La(t — t)} (Vi — &)
i=1 i=1

O = W)t Y La(t — (Y - )

~

+(Wy — Wy)n~ Z{Lh (t— &) — Ln(t —t)}t
+Won! Z{Lh(f —£) = Lp(t — t:) Yt + (Wy = Wy)n ™ Zn:Lh(t — 1)t

The second and third terms are o,((nh)""/%) by Lemmas 7 and 9. For the
fourth term, it follows from Lemmas 6, 7 and 10 that it is

- {;(—l)j(cé)j} Py + 0, (h* + (nh) 1)

Application of Lemmas 2 and 10 shows that the fifth term is given by

[

. . 1 /
S (1AM Py — S8R (L) (el Py + 3 (gP1) fg + & (3(0P1)" /9

+2(¢')*P1/g* — g"P1/9)} + (nh)~ ZL LV (t,t:)/g
Top(h* + (nh)~Y2).
Using Lemma 7, the last term can be written as

k
2 2

. ) 1
E { E 1)7{02}]} P+ ibzhzuz(L){c'z"Pl —cyg'Pi/g

j=1
+Cz((gP1)”/g ~2(g")*P1/g* + ¢"P1/9)} — PiVo/g — 2¢' P1hV1/g”
+o0,(B2R% + (nb)~Y/?),

In a similar way, Wyn™! St (P L)y (f — ;)Y; can be written as
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™ (B~ 0)Ye = PR (L P9 + (Pag)'f9)

+2¢,9'(9P1)' /g*} — g'n ' Y (PLL),(t - t)tV (t,t:)/9% — (gP1)hVi/ g
i=1

+o, (r* + (nh)"l/z).

Collecting the terms of the nonstochastic parts, the b power terms disappear,
and the b2h? terms give —b2h2u,(L)cy/2, which yields the C(z)b?h? term.
For the stochastic parts, note that

(nh)~ ZL (t —t)t:V (L, t)/g — PiVo/g = —n” Xn)(PlL’)h(t—t,-)V(t,ti)/g,

i=1 i=1

n

“USY(PUL), (¢ — )V (t, 1) — PhVi = —hnT! zn:(Pl(PlL)')h(t —t)V(t,t;)

which is o,((nh)~1/2). These all together with Lemma 3(b), give the desired
result.

Proof of (2.2) in Section 2. The asymptotic normality of R, (t) in the
proposition follows from standard arguments. Since it has mean zero, we
only need to consider its variance. First, note that

var(Ra,) = (nh)™"0%uo(L%) /g + o((nh) ™).
For the variance of R, (t), let
Tj - TL—I Z Lh(t - ti)vb(t,:z;,',a:j).
i=1,i#j
Then

var(R,,) =n~ GZZTZ/g

Approximate T; by

Ly % g(t)Ky(z — z;)/ f () — Ky % {La(t — m(:))}(z;)
— g K,(z — z;)/f(z) — Lalt — t;) + O(R®6" + 6°R7%).
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Then
n”! in = NG FNE)y x f —2(9/F) Ky * [Ky * {Ln(t — m ()} f]
+ [IKux {Lalt - m()}P@)S )y +O().

The first term gives b= 'g%uo(K?2)/f + o(b™'). Letting a = rm’, the second
term is equal to

—2gh™! /K(u) /K(w)L(au + aw)dwdu + O(1)

= —2gh ' uo(K (K = L)) + o(1).
Similarly, the third term yields

R uo((K * L)?) f /m.

Finally, there is also a term due to cov(R,, (t), R,,(t)). Handling this in
a similar way to the above completes the proof of (2.2).
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