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Abstract

Unit level logistic regression model with mixed effects has been used for estimating
small area proportions, which treats the spatial effects as random effects and assumes
linearity between the logistic link and the covariates. However, when the functional
form of the relationship between the logistic link and the covariates is not linear, it
may lead to biased estimators of the small area proportions. In this paper, we relax the
linearity assumption and propose two types of kernel-based logistic regression models for
estimating small area proportions. We also demonstrate the efficiency of our proposed
models using simulated data and real data.

Keywords: Logistic regression, mixed effect, proportion, small area estimation, spatial
effect, support vector machine.

1. Introduction

Small area estimation (SAE) is a methodology for producing the estimates of parameters
for small areas for which there is not enough sample to construct reliable estimates directly
based on the survey sample. From a statistical point of view the small area is a small sub-
population constituted by specific demographic and socioeconomic group of people, within
a larger geographical areas. SAE has received considerable attention in recent years due to a
growing demand for reliable small area statistics for policy analysis and planning purposes.
There are two typical types of models for SAE, which are unit level and area level small area
models. The most popular method to tackle SAE employs linear mixed effects model (Jiang
and Lahiri, 2006). In fact, this model incorporates area-specific random effects to account
for between-area variation which cannot be explained by the model covariates (Rao, 2003;
Pfeffermann, 2013). However parametric formulation may not always be desirable because in
many situations the dependence of the response or the link on the covariates exhibits more
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complicated manners. The linear mixed effects model is useful for estimating the small area
means efficiently under normality assumptions. Nonlinear SAE can be found in Opsomer
et al. (2008), Salvati et al. (2011), Shim and Hwang (2012) and Shim et al. (2013). In this
paper, we consider the situation when the estimate to be produced is proportion at small
area level.

To estimate small area proportions, unit level mixed effects logistic regression (MELR)
model with small area specific effects is commonly used. This model treats the spatial ef-
fects as random effects. In this paper we propose a mixed effects kernel logistic regression
(MEKLR) that combines small area random effects with a smooth, nonparametrically spec-
ified trend, which is based on kernel technique of support vector machine (SVM). We also
propose a kernel logistic regression (KLR) with mixed input variables, which utilizes a
categorical covariate instead of using random effects to treat spatial effects. We call this KL-
RMIV. Similar idea was used in Shim (2012). The SVM, first developed by Vapnik (1995)
and his group at AT&T Bell Laboratories, has been successfully applied to a number of real
world problems related to classification and regression problems. For applications of SVM
see Cho et al. (2010), Hwang and Shim (2012) and Shim and Hwang (2013).

The rest of this paper is organized as follows. Section 2 describes the MELR for estimating
small area proportions. Section 3 illustrates MEKLR and KLRMIV models for estimating
small area proportions. Section 4 and section 5 present numerical studies and conclusion,
respectively.

2. MELR model for estimating small area proportions

To estimate small area proportions, unit level MELR model with small area specific effects
is commonly used. Let a finite population U of size N be partitioned into m small areas
of interest such that ∪mi=1Ui = U and

∑m
i=1Ni = N . Suppose yij is the value of a study

variable y on unit j in area i for i = 1, 2, · · · ,m, j = 1, 2, · · · , Ni. Here we consider the case
yij takes on a value of zero or one, depending upon whether or not the jth individual within
the ith small area possesses the characteristic of interest. Note that m is the number of small
areas and Ni is the number of population units in area i. We are interested in estimating the
small area proportion given by pi = N−1i

∑
j∈Ui

yij . Then, the following unit level MELR
model is commonly used:

log
pij

1− pij
= b0 + βtxij + bi, j = 1, · · · , Ni, i = 1, · · · ,m, (2.1)

where b0 is constant term, bi can be interpreted as the small area effect, xij ∈ Rd is covariate
vector, and pij denotes the probability of a response for the the jth observation in the ith
small area such that

pij =
exp

(
b0 + βtxij + bi

)
1 + exp

(
b0 + βtxij + bi

) . (2.2)

Then, the small area estimator of the proportion pi is

p̂i =
1

Ni

∑
j∈Si

yij +
∑
j∈Ri

ŷij

 , (2.3)
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where Si and Ri denote the sampled and non-sampled sets of units in area i, respectively,
with Ui = Si ∪ Ri. Here, ŷij is the predicted value of response for population unit j ∈ Ri.
In fact, we use the biased-adjusted estimator given as

p̂i =
1

Ni

∑
j∈Si

yij +
∑
j∈Ri

ŷij +
Ni − ni
ni

∑
j∈Si

(yij − ŷij)

 , (2.4)

where ni denotes the number of the units in Si. The predictor (2.4) will have higher variabil-
ity and so should only be used when there are large outlying data points. Refer to Salvati et
al. (2011) for details. Here, ŷij is the estimated or predicted value of response for population
unit j ∈ Si or j ∈ Ri.

In fact, ŷij ’s in (2.3) and (2.4) are obtained by utilizing p̂ij given as

p̂ij =
exp

(
b̂0 + β̂

t
xij + b̂i

)
1 + exp

(
b̂0 + β̂

t
xij + b̂i

) , (2.5)

where xij is covariate vector for population unit j ∈ Si or j ∈ Ri. That is, if p̂ij ≥ 0.5, then
ŷij = 1. Otherwise, ŷij = 0.

3. KLR models for estimating small area proportions

In this section we illustrate MEKLR and KLRMIV models for estimating small area
proportions.

3.1. MEKLR model

For the sampled units we rewrite (2.1) as follows:

ηij ≡ log
pij

1− pij
= b0 + βtxij + btuij , j = 1, · · · , ni, i = 1, · · · ,m, (3.1)

where b = (b1, · · · , bm)t, uij is an m× 1 indicator vector for the individual effect bi. Then,
the negative log-likelihood can be written as

`(b0,β, b) = −
m∑
i=1

ni∑
j=1

yijηij +

m∑
i=1

ni∑
j=1

log (1 + exp (ηij)) . (3.2)

A nonlinear form of MELR, known as MEKLR, can be obtained via the so-called ”kernel
trick”, whereby a conventional MELR model is constructed in a high dimensional feature
space induced by a Mercer (1909)’s kernel. More formally, given training data, ∪mi=1Si, with
Si = {(xij , yij)}ni

j=1, xij ∈ X ⊂ Rd, a feature space F (φ : X → F), is defined by a kernel
function, K : X × X → R, that evaluates the inner product between the images of input
vectors in the feature space, i.e., K(xik,xil) = φ(xik)tφ(xil). The kernel function used here
is the Gaussian kernel,

K(xik,xil) = exp

(
− 1

σ2
‖xik − xil‖2

)
, (3.3)
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where σ2 is the kernel parameter.
The penalized negative log-likelihood function of the MELR model constructed in the

feature space is given as follows:

`(b0,w, b) = −
m∑
i=1

ni∑
j=1

yijηij +

m∑
i=1

ni∑
j=1

log (1 + exp (ηij)) +
λ

2
‖w‖2, (3.4)

where ηij = b0 + wtφ(xij) + btuij and λ is the penalty parameter. For convenience, we
rearrange yij ’s using single index and then denote each response by yi, i = 1, · · · , n. That
is, yij ’s are denoted as follows:

y1 = y11, y2 = y12, · · · , yn1
= y1,n1

, yn1+1 = y2,1, · · · , yn = ym,nm
.

We also rearrange (xij ,uij)’s and then denote these pairs using single index in accordance
with yij ’s. Then, the representer theorem (Kimeldorf and Wahba, 1971) guarantees that the
minimizer of the penalized negative log-likelihood (3.4) to be ηi = b0 + kiα + btui, where
ki is the ith row of the n× n kernel matrix K with elements K(xi,xj), i, j = 1, · · · , n.

Thus, the penalized negative log-likelihood (3.4) can be rewritten as

`(α̃) = −yWα̃+ 1tn log (1n + exp(Wα̃)) +
λ

2
α̃tK0α̃, (3.5)

where α̃ = (αt, bt, b0)t, y = (y1, · · · , yn)t, W = (K,U ,1n), U = (u1, · · · ,un)t, 1n is the
n× 1 vector of ones, log(·), exp(·) are componentwise functions, and

K0 =

(
K O1

Ot
1 O2

)
with the n× (m+ 1) zero matrix O1 and (m+ 1)× (m+ 1) zero matrix O2.

By minimizing the penalized negative log-likelihood (3.5) we obtain the estimator of pa-
rameter vector α̃, but not in a explicit form, which leads to use the IRWLS procedure. At
(l + 1)th iteration, the parameter vector is estimated as follows:

α̃(l+1) = (W tDW + λK0)−1W tDy∗, (3.6)

where D is a diagonal matrix of p(l) � (1n − p(l)), p(l) is the estimate of p = (p1, · · · , pn)t

obtained at the lth iteration, and y∗ = D−1(y − p(l)) + Wα̃(l) is the working response
vector. Here, � represents the componentwise multiplication.

We now consider computing the estimator of the small area proportion pi. If we obtain
α̃ through the IRWLS procedure, then, given a covariate vector xo for a population unit in
Si or Ri for i = 1, · · · ,m, we can obtain the corresponding estimated probability for xo as
follows:

p̂o =
exp

(
b̂0 + koα̂+ b̂

t
u
)

1 + exp
(
b̂0 + koα̂+ b̂

t
u
) , (3.7)

where ko = (K(xo,x1), · · · ,K(xo,xn)). Thus, p̂o ≥ 0.5, then ŷo = 1. Otherwise, ŷo = 0.
Then we can obtain the estimator of the small area proportion pi by applying ŷo to (2.3) or
(2.4).
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3.2. KLRMIV model

We now illustrate KLRMIV model. As mentioned before, this model treats spatial effects
using a categorical covariate instead of using small area random effect. Thus, the penalized
negative log-likelihood function for the KLRMIV model constructed in the feature space is
given as follows:

`(b0,w) = −
m∑
i=1

ni∑
j=1

yijηij +

m∑
i=1

ni∑
j=1

log (1 + exp (ηij)) +
λ

2
‖w‖2, (3.8)

where ηij = b0 +wtφ(xij) and λ is the penalty parameter.

We now divide covariate vector xij into two components x
(n)
ij and x

(c)
ij , where x

(n)
ij is a

vector of numerical covariates and x
(c)
ij is a vector of categorical covariates. As done before, we

rearrange yij ’s and xij ’s using single index, and then denote each response by yi, i = 1, · · · , n
and each covariate vector by xi = (x

(n)
i ,x

(c)
i ), i = 1, · · · , n. Then, the representer theorem

(Kimeldorf and Wahba, 1971) guarantees that the minimizer of the penalized negative log-
likelihood (3.8) to be ηi = b0 + kiα, where ki is the ith row of the n × n kernel matrix
K with elements K(xi,xj), i, j = 1, · · · , n. Here, we propose the use of the kernel function
defined as follows:

K(xi,xj) = K(n)(x
(n)
i ,x

(n)
j )K(c)(x

(c)
i ,x

(c)
j )

= exp

(
− 1

σ2

dn∑
k=1

|x(n)ik − x
(n)
jk |

dnRk
− 1

β

dc∑
l=1

I(x
(c)
il 6= x

(c)
jl )

dc

)
, (3.9)

where dn and dc are the numbers of numerical and categorical covariates, respectively. Here,
Rk is the range of the kth numerical covariate, σ2 and β are kernel parameters. This kernel
function can be expressed as a componentwise product of the weighted exponential kernel
function and Hamming distance kernel function (Aradhye and Dorai, 2002), which leads an
easy verification of kernelness (Genton, 2001).

Then, the penalized negative log-likelihood (3.8) can be written as

`(α̃) = −yWα̃+ 1tn log (1n + exp(Wα̃)) +
λ

2
α̃tK0α̃, (3.10)

where α̃ = (αt, b0)t, y = (y1, · · · , yn)t, W = (K,1n), 1n is the n × 1 vector of ones,
log(·), exp(·) are componentwise functions, and

K0 =

(
K 0n
0tn 0

)
with the n× 1 zero vector 0n.

By minimizing the penalized negative log-likelihood (3.10) we obtain the estimator of
parameter vector α̃, but not in a explicit form, which leads to use the IRWLS procedure.
At (l + 1)th iteration, the parameter vector is estimated as follows:

α̃(l+1) = (W tDW + λK0)−1W tDy∗, (3.11)
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where D is a diagonal matrix of p(l) � (1n − p(l)), p(l) is the estimate of p = (p1, · · · , pn)t

obtained at the lth iteration, and y∗ = D−1(y − p(l)) + Wα̃(l) is the working response
vector. Here, � represents the componentwise multiplication.

We now consider computing the estimator of the small area proportion pi. If we obtain
α̃ through the IRWLS procedure, then, given a covariate vector xo for a population unit in
Si or Ri for i = 1, · · · ,m, we can obtain the corresponding estimated probability for xo as
follows:

p̂o =
exp

(
b̂0 + koα̂

)
1 + exp

(
b̂0 + koα̂

) , (3.12)

where ko = (K(xo,x1), · · · ,K(xo,xn)). Thus, p̂o ≥ 0.5, then ŷo = 1. Otherwise, ŷo = 0.
Then we can obtain the estimator of the small area proportion pi by applying ŷo to (2.3) or
(2.4).

3.3. Model selection

The functional structures of the proposed two types of KLR models are characterized by
the hyperparameters, that is, kernel and penalty parameters. To choose optimal values of
hyperparameters of the model we define a leave-one-out cross validation (LOOCV) function
as follows:

CV (θ) =
1

n

n∑
i=1

(
yi − p̂(−i)i

)2
, (3.13)

where θ is a set of hyperparameters, and p̂
(−i)
i =

exp
(
η̂
(−i)
i

)
1+exp

(
η̂
(−i)
i

) is the estimate of pi without

the ith observation. Among the candidate values of hyperparameters, we choose the values
of hyperparameters which minimize the LOOCV function (3.13).

4. Numerical studies

In this section, we illustrate the performance of two types of KLR models using a simulated
example and a real example. We note that we use (2.4) for the estimator of pi in numerical
studies.

Example 4.1 We generate the artificial data set consisting of 10 small areas by following
two steps. The results are described in Table 4.1.

1. The size Ni of each Ui = Si ∪ Ri, i = 1, · · · , 10, is given as Ni = [100ui], where ui is
generated from uniform distribution U(0.5, 1.5) and [·] is round-off function. The size
ni of each si is given as ni = [0.1Ni], i = 1, · · · , 10.

2. Generate the continuous covariate xij ’s from uniform distribution U(0, 1). The covariate
xij is nonlinearly related to the canonical parameter as ηij = sin(πxij) + bi, where bi
is generated from a normal distribution N(0, 1). The proportion pij ’s are obtained as
pij = exp(ηij)/ (1 + exp(ηij)). We generate each response yij from Bernoulli distribu-

tion with pi = 1
Ni

∑Ni

j=1 pij .
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We note that for KLRMIV x
(n)
ij ’s are xij ’s generated as above and x

(c)
ij = i, i = 1, · · · , 10.

After Ni’s, ni’s and pi’s are determined and yij ’s for all small areas are generated, we repeat
100 times the procedure of making Si of size ni from Ui, i = 1, · · · , 10. In this sense we carry
out a total of 100 simulations. For each small area, we compute the Monte Carlo estimate
of the mean absolute error (MAE) regarding small area proportion given as

MAEi =
1

100

100∑
t=1

|p̂it − pi|, i = 1, · · · ,m. (4.1)

The results of MEKLR, KLRMIV and MELR are shown in Tables 4.1. The boldfaced
figure in each column signifies the smallest averages of MAEs. From this table we can see
that overall two types of KLR models work better than the MELR.

Table 4.1 Average of MAEs for the estimates of pi’s for artificial data

State Ni ni pi MEKLR KLRMIV MELR
1 145 15 0.8245 0.0906 0.0859 0.0924
2 73 7 0.9226 0.0956 0.0890 0.0958
3 111 11 0.9039 0.0769 0.0772 0.0776
4 99 10 0.6793 0.1196 0.1231 0.1331
5 139 14 0.1009 0.0784 0.0765 0.0789
6 126 13 0.6224 0.1154 0.1252 0.1261
7 96 10 0.3054 0.1155 0.1208 0.1227
8 52 5 0.1480 0.1378 0.1363 0.1386
9 132 13 0.2732 0.0949 0.0951 0.0956
10 94 9 0.1270 0.0679 0.0682 0.0683

Example 4.2 We now consider the numerical study on the 1996 presidential election data set
which can be obtained in the spatial-econometrics library at http://www.spatial- economet-
rics.com/ html/jplv7.zip. The data set contains approval indices of Clinton for presidential
election in 853 counties of 13 states. The variables, Ni’s, ni’s and pi’s are described in Table
4.3. Here, pi denotes the approving rating of Clinton for each state. We note that for KL-

RMIV x
(n)
ij ’s are composed of variables described in Table 4.2 and x

(c)
ij = i, i = 1, · · · , 13.

As in Example 4.1, we carry out a total of 100 simulations and then compute MAEs using
(4.1). The results of MEKLR, KLRMIV and MELR are reported in Tables 4.3. The bold-
faced figure in each column signifies the smallest averages of MAEs. From this table we can
see that overall two types of KLR models work better than the MELR.

Table 4.2 Description of input variables used in election data

Variable Description
x1 Logarithm of urban population
x2 Logarithm of rural population
x3 Population with high school or GED graduates as a proportion of educated
x4 Population with some college as a proportion of educated
x5 Population with associate degrees as a proportion of educated
x6 Population with college degrees as a proportion of educated
x7 Population with grad/professional degrees as a proportion of educated
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Table 4.3 Average of MAEs for the estimates of pi’s for election data

State Ni ni pi MEKLR KLRMIV MELR
1 67 10 0.4627 0.1074 0.1278 0.1320
2 75 11 0.8800 0.1403 0.1265 0.1431
3 15 8 0.6000 0.4022 0.3611 0.4116
4 58 9 0.4310 0.1019 0.1205 0.1292
5 63 9 0.3492 0.1111 0.1208 0.1211
6 9 5 1.000 0.5556 0.5556 0.5556
7 3 2 1.000 0.6667 0.6667 0.6667
8 67 10 0.4776 0.1104 0.1011 0.1437
9 159 25 0.4906 0.0687 0.0825 0.0848
10 99 15 0.2020 0.0761 0.0750 0.0808
11 44 7 0.9091 0.1632 0.1521 0.1667
12 102 15 0.3725 0.0802 0.0989 0.1072
13 92 14 0.7174 0.1404 0.1029 0.1451

5. Conclusions

In this paper, we have studied how kernel-based logistic regression models perform in esti-
mating small area proportions. By the way, it is difficult to compare the proposed MEKLR
and KLRMIV models in terms of accuracy. The proposed models take over all advantages of
SVM that capture nonlinearities in the data, that have good generalization ability, and that
are useful tools when the data are characterized by complex patterns of spatial dependence.
In particular, the proposed models can be easily used without heavy computations under
high-dimensional covariate settings.
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