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Abstract
This paper considers the estimation of the long memory parameter in nonparametric regression with strongly

correlated errors. The key idea is to minimize a unified mean squared error of long memory parameter to select
both kernel bandwidth and the number of frequencies used in exact local Whittle estimation. A unified mean
squared error framework is more natural because it provides both goodness of fit and measure of strong de-
pendence. The block bootstrap is applied to evaluate the mean squared error. Finite sample performance using
Monte Carlo simulations shows the closest performance to the oracle. The proposed method outperforms existing
methods especially when dependency and sample size increase. The proposed method is also illustreated to the
volatility of exchange rate between Korean Won for US dollar.

Keywords: nonparametric regression, kernel bandwidth selection, long memory, exact local Whit-
tle estimator, block bootstrapping

1. Introduction

Nonparametric regression is a statistical method estimating the mean function when the true signal is
masked by some level of noise. Many methods such as kernel smoothing, splines, Fourier, and wavelet
methods have been developed at an exponential rate over the last two decades. However, most of these
methods are focused on cases when the true trend function is contaminated by uncorrelated or weakly
correlated errors. In this paper, nonparametric regression is considered when the errors are strongly
correlated in the sense of long memory. For related works, see Beran and Feng (2002), Hall and Hart
(1990), Künsch (1986), Masry and Mielniczuk (1999), Opsomer et al. (2001) and references therein.

To concrete our discussion, consider the following statistical model

Yt = f
( t
n

)
+ ϵt, t = 1, 2, . . . , n,

where unobservable error {ϵt} is assumed to be a long memory, also known as long-range dependence
(LRD). Long memory errors {ϵt} are formally defined as the weakly stationary time series with spectral
density diverging at zero-frequency,

g(ω) ∼ c|ω|−2d, as ω→ 0, (1.1)
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and d ∈ (0, 1/2) is called the long memory or LRD parameter. A popular kernel estimator of mean
function is given by

f̂h(x) =
1
nh

∑
i

K
(

x − i/n
h

)
Yi (1.2)

with bandwidth h and a kernel function K that integrates to one. A crucial point in nonparametric
regression is the selection of bandwidth parameter h. Hall and Hart (1990) showed under some mild
assumptions that the optimal bandwidth minimizing the mean integrated squared error (MISE)

MISE(h) =
∫
I

E
(

f̂h(x) − f (x)
)2

dx, I ⊂ (0, 1), (1.3)

is asymptotically given by

h ∼ Cn−
1−2d
5−2d ,

for some positive constant C. Thus, it is important to estimate the long memory parameter to find the
optimal bandwidth.

The long memory parameter estimation is also necessary for data adaptive bandwidth selection
methods, such as the cross validation or bootstrap methods. The usual leave-one-out cross validation
suffers from severe bias for strongly correlated errors. See Opsomer et al. (2001) for an excellent
review of this phenomenon. This bias can be reduced by considering the modified cross-validation
(MCV) method of Chu and Marron (1991), also known as leave-k-out cross validation. The main idea
is to delete k observations forward and backward in estimating f (t/n) so that strong dependence is
alleviated. More formally, it is given by minimizing the residual sum of squares given by

ĥ = argmin
h

n−1
n∑

t=1

(
f̂ (−k)
h

( t
n

)
− Yt

)2
, (1.4)

where f̂ (−k)
h (t/n) is a kernel estimator of f (t/n) with bandwidth h after leaving out Yt+ j,−k ≤ j ≤ k

in the estimation. A continuous analog of MCV is proposed by Kim et al. (2009) using a bimodal
kernel. Still, the block size (or leave-out number) also depends on the LRD parameter that is critical to
determine the optimal bandwidth. Hall et al. (1995) proposed a bandwidth selection method based on
block bootstrap where the MISE is estimated from a block bootstrap sample of block length (2k + 1).
The long memory parameter plays an additional key role in estimating the true smooth trend function
masked by strongly correlated errors.

This paper considers a more precise estimation of the long memory parameter in the presence of
a smooth trend. Somewhat surprisingly, Robinson (1997) showed that the memory parameter can be
estimated log1/2(n)-consistently from the raw data {Yt}, even in the presence of a trend. However, the
iterative method is typically used, as in Ray and Tsay (1997), because the long memory parameter
estimated by Robinson (1997) performs poorly in practice. That is, starting with initial bandwidth
h0, estimate the long memory parameter from the residual series. Then, update the kernel bandwidth
from the estimated long memory parameter. A more efficient method of estimating the long memory
parameter was proposed by Hurvich et al. (2005), where the trend function estimation is bypassed by
trimming, tapering and differencing.

However, an additional tuning parameter is also required in estimating the long memory parameter.
For example, the number of frequencies used in the semiparametric estimation of long memory such
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as exact local Whittle estimation (ELW) plays a central role. One of the pioneering methods suggested
by Henry (2001) is to minimize the mean squared error (MSE)

m̂ = argmin
m

E
(
d̂(m) − d

)2
, (1.5)

where d̂(m) is the LW estimator based on m number of low frequencies.
This paper starts with the observation that kernel bandwidth selection can be unified by minimizing

the MSE of the long memory parameter for a more precise estimation of the LRD parameter. The
available methods iteratively find kernel bandwidth h by minimizing (empirical) MISE in (1.3), but
the LRD parameter is estimated from the residuals by minimizing the MSE in (1.5). Therefore, this
kernel bandwidth is potentially sub-optimal for the estimation of LRD parameter since it minimizes
errors from the true trend function. Instead, it is proposed to find the tuning parameters simultaneously
by minimizing a single loss function(

ĥlw, m̂lw

)
= argmin

h,m
E

(
d̂(m, h) − d

)2
, (1.6)

where d̂(m, h) is the ELW estimation of the LRD parameter from the residual series with kernel band-
width h and ELW bandwidth m. In the newly suggested framework, the LRD parameter encapsulates
both goodness of fit and the measure of strong dependence. This is also intuitive in the sense that
residuals are good proxies for model checking. The MSE is estimated by block bootstrapping meth-
ods. A more detailed description of the proposed method is elaborated in Section 2. The finite sample
performance is examined in Section 3 and illustrated with KRW-USD exchange rate in Section 4.
Section 5 contains the conclusion.

2. Description of the proposed method

In this section, the tuning parameters selection method based on the MSE of the LRD parameter
estimation is detailed. Illustrated here with the Nadaraya-Watson estimator and the ELW estimator
for their simplicity and superior performance in practice. However, it can be applied to other types of
Kernel estimators such as the local polynomial estimator and/or a variety of LRD parameter estimation
methods such as the log-periodogram estimator also known as GPH estimator (Geweke and Porter-
Hudak, 1983; Robinson, 1995).

For given observations Y1, . . . , Yn, consider a kernel estimator

f̂h(x) =
∑

i

wi(h)Yi, wi(h) = K
(

x − i/n
h

) / n∑
j=1

K
(

x − j/n
h

)
, (2.1)

where K is a kernel function and h is a kernel bandwidth. Then, the residuals can be written as

et(h) = Yt − f̂h(t), t = 1, . . . , n. (2.2)

The LRD parameter is now estimated based on the residual series {et, t = 1, . . . , n}. The ELW es-
timator is a semiparametric estimation of the long memory parameter proposed by Shimotsu and
Phillips (2005) shown to be consistent and asymptotically normal outside the stationary region if the
optimization is searched within the length of a 9/2 interval. It is formally defined by

d̂(m, h) = argmin
d∈Θ

Rm,h(d),
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where Θ = [∆1,∆2] for −∞ < ∆1 < ∆2 < ∞ with ∆2 − ∆1 ≤ 9/2 and

R(d) = log Ĝ(d) − 2d
1
m

m∑
j=1

log λ j, Ĝ(d) =
1
m

m∑
j=1

I∆de(h)(λ j).

Here I∆de(h)(λ j) is the periodogram of a fractionally differenced series at the Fourier frequencies λ j =

2π j/n, j = 1, . . . , [n/2], where [x] represent the nearest integer less than or equal to x. Precisely, it is
given as

I∆de(λ j) =
1

2πn

∣∣∣∣∣∣∣
n∑

t=1

∆det(h) exp(−itλ j)

∣∣∣∣∣∣∣
2

,

where the fractional differencing is given by

∆det(h) = (1 − B)det(h) =
t−1∑
k=0

Γ(−d + k)
Γ(−d)Γ(k + 1)

(
Yt−k − f̂h(t − k)

)
.

The ELW bandwidth refers to the number of low frequencies m used in the estimation.
Recall that the proposed bandwidths selector is given by(

ĥlw, m̂lw

)
= argmin

h,m
E

(
d̂(m, h) − d

)2
, (2.3)

where d̂(m, h) is the ELW estimation of the LRD parameter from the residual series with kernel band-
width h and ELW bandwidth m. Therefore, the MSE of the LRD parameter estimation is regarded
as a function of the kernel bandwidth h and ELW bandwidth m so that the best bandwidths can be
selected by minimizing a single quadratic loss. However, the true LRD parameter d is unknown; and
need to be estimated from the data. The so-called block bootstrap method in Hall et al. (1995) and
Zhou and Taqqu (2007) is used here, but other bootstrapping such as the Sieve bootstrap studied in
Poskitt (2008) and the frequency domain methods used by Kim and Nordman (2013) can also be used
accordingly.

The block bootstrap sample of residual series {et(h)}, for given bandwidth h, is obtained as follows.
First, center the residuals

êt(h) := et(h) − e(h), e(h) = n−1
∑

t

et(h),

and draw the starting point of the new block im uniformly from {1, . . . , n − ℓ} where ℓ is the block
size. Then, sample a block of observations (êim (h), . . . , êim+ℓ−1(h)) with replacement b times until it
has more than n observations. A final bootstrap pseudo-series is obtained by taking only the first n
observations. A block size is critical in finite sample performance, and following the suggestion of
Politis and White (2004), this paper uses the block size determined by

ℓ = 2 min
k

{
k ≥ 1 such that |ρ̂(k)| ≤ 2

√
n

}
, (2.4)

where ρ̂(k) is a sample autocorrelation function at lag k based on et(h). This rule selects the block
size data adaptively by considering lags with negligible autocorrelations. The constant 2 in (2.4) is
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to accommodate negative lags. Politis and White (2004) proved the validity of rule (2.4) for weakly
dependent series including polynominal decaying autocorrelations. However, the rigorous proof for
strongly dependent series remains open.

Finally, the bootstrap strategy for selecting optimal tuning parameters is described as follows:

• Step 1. Obtain an initial estimate of d̂(0) from Hurvich et al. (2005) and set m(0) = [n0.8].

• Step 2. Iterate the following procedures until the relative ratio is within the error bound,∣∣∣∣∣∣ d̂(i+1) − d̂(i)

d̂(i)

∣∣∣∣∣∣ ≤ ε.
1. Update a kernel bandwidth from

h(i+1) = argmin
h

E∗
(
d̂∗

(
h,m(i)

)
− d̂(i)

)2
,

where E∗ represents empirical average over nB bootstrap replications and d̂∗(h,m(i)) is an ELW
estimator from the block bootstrap sample of residuals ê∗t (h) with block length selection rule
(2.4) and m(i) number of frequencies.

2. Update an ELW number of frequency by

m(i+1) = argmin
m

E∗
(
d̂∗

(
h(i+1),m

)
− d̂(i)

)2
,

where the ELW estimator d̂∗(h(i+1),m) is calculated from the bootstrap sample of residuals
ê∗t (h(i+1)) with block length selection rule (2.4).

3. Update an ELW estimator

d̂(i+1) = d̂
(
h(i+1),m(i+1)

)
.

Remark 1. Hurvich et al. (2005) is used for initial estimator d̂(0) for its consistency, but any con-
sistent estimator suffices.

3. Monte Carlo simulations study

This section reports the finite sample performance of the proposed method through extensive Monte
Carlo simulations. Four data generating processes (DGPs) are considered as follows:

• (DGP1) f1(x) = 1,

• (DGP2) f2(x) = sin(2πx),

• (DGP3) f3(x) = 300x3(1 − x)3,

• (DGP4) f4(x) = 10x4.

with Gaussian FARIMA(0, d, 0) processes for long memory errors given as

(1 − B)dϵt = ut, ut ∼ N(0, σ2
u).
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Figure 1: Time plots of DGPs considered in the simulations.

DGP1 is a constant function so that it essentially the same as to estimate the LRD parameter. It
is included to see whether the proposed method works well even without any obvious trend. DGP2
considers a cyclic trend; and this makes the long memory parameter estimation harder (e.g. Baek and
Pipiras (2014)). DGP3 is used in Chu and Marron (1991) and DGP4 appears in Hurvich et al. (2005).
Figure 1 depicts a realization of each DGP with FARIMA(0, 0.3, 0) errors with sample size n = 1,000.

To compare a new tuning parameters selection rule based on ELW criterion, it is compared to four
other methods. The first method uses a bimodal kernel described in Kim et al. (2009) to estimate the
optimal bandwidth for the mean function, say hb, and block bootstrap residuals are obtained by

et(hb) = Yt − f̂hb (t), t = 1, . . . , n,

to estimate the LRD parameter. Then, the optimal ELW bandwidth is obtained by iterating

m(i+1)
b = argmin

m
E∗

(
d̂∗(hb,m) − d̂

(
hb,m

(i)
b

))2
(3.1)

until convergence with m(0) = [n0.8].
The second method is the MCV of Chu and Marron (1991) with the adaptive choice of block

length. As detailed in Kim et al. (2009), the block length can be determined by finding

k̂ = min
k

{
k ≥ 1 such that |ρ̂(k)| ≤ 2

√
n

}
,

where ρ(k) is the sample autocorrelation from the residual series. After finding the optimal bandwidth,
say hm, the remaining procedure is the same as the above. That is, similar to (3.1), an ELW estimator is
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Table 1: MSE and ASE(×1000) for DGP1 and DGP2 with sample size n = 1,000

d DGP1 DGP2
ELW Bimodal MCV Oracle HLS ELW Bimodal MCV Oracle HLS

0.10 MSE 0.350 0.327 0.357 0.320 0.368 0.650 0.436 0.613 0.325 0.358
ASE 0.520 0.992 2.616 0.673 15.271 7.067 7.109 5.281

0.20 MSE 0.215 0.225 0.353 0.210 0.462 0.379 0.461 1.040 0.206 0.443
ASE 0.976 2.725 6.618 1.781 25.283 13.546 14.747 10.064

0.30 MSE 0.168 0.199 0.323 0.163 0.331 0.216 0.526 1.152 0.173 0.366
ASE 3.202 7.256 14.563 4.078 34.038 24.792 27.558 17.759

0.35 MSE 0.152 0.183 0.346 0.156 0.335 0.215 0.577 1.710 0.176 0.317
ASE 5.953 11.907 21.398 6.404 42.610 36.941 39.845 25.105

0.40 MSE 0.208 0.291 0.540 0.206 0.347 0.218 0.433 2.096 0.184 0.357
ASE 10.293 19.291 30.338 9.638 57.916 48.812 51.644 32.486

0.45 MSE 0.167 0.249 0.796 0.157 0.248 0.187 0.462 2.864 0.166 0.265
ASE 14.314 28.314 43.282 13.078 77.455 62.660 67.712 40.986

MSE = mean squared error; ASE = average sum of squares; DGP = data generating processes; ELW = exact local
Whittle estimation; MCV = modified cross-validation; HLS = Hurvich et al. (2005) method.

calculated with the optimal bandwidth minimizing quadratic error estimated from the block bootstrap
samples of residuals et(hm) with m(0) = [n0.8].

The third method is the oracle bandwidth assuming that the true mean function is known. It is
defined as

hopt = argmin
h

n−1
n∑

t=1

(
f̂h(t) − f

( t
n

))2

and the LRD parameter is estimated similarly as described above with block bootstrapping residuals
et(hopt). In addition to three LRD parameter estimators described above, Hurvich et al. (2005) is also
considered for comparison where no iterative procedure is applied. The detailed tuning parameters
for Hurvich et al. (2005) are the same as in their paper with n0.15 trimming; and denoted as HLS.

All results are based on N = 500 replications and the nonparametric regression estimator f̂h(t)
uses the kernel function in Robinson (1997), K(x) = 0.5(1 + cos(πx)), |x| ≤ 1, for consistency. The
FARIMA(0, d, 0) errors ϵt are generated with standard deviation 0.5 regardless of LRD parameter d by
setting σ2

u = 0.25Γ2(1 − d)/Γ(1 − 2d). Bootstrap replication nB is also important for the performance
and efficiency of the algorithm, and it is found that nB = 50 is quite successful. The performance
measures are the (empirical) MSE

MSE = E∗
(
d̂(h,m) − d

)2

and the (empirical) average sum of squares (ASE)

ASE = E∗
n−1

n∑
t=1

(
f̂h(t) − f

( t
n

))2
 .

Table 1 shows the MSE for the LRD parameter and the ASE(×1000) for all five methods when
DGP1 and DGP2 are considered. For DGP1, note that our proposed method based on ELW performs
nicely in all cases considered for both MSE and ASE. The MCV method performs the worst for both
MSE and ASE, but this is consistent with the simulations results in Hall et al. (1995), where they
also reported that MCV tends to find a smaller bandwidth due to a flatter MISE curve leading to
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Table 2: MSE and ASE(×1000) for DGP3 and DGP4 with sample size n = 1, 000

d DGP3 DGP4
ELW Bimodal MCV Oracle HLS ELW Bimodal MCV Oracle HLS

0.10 MSE 0.548 0.422 0.674 0.362 0.381 0.733 0.633 0.906 0.691 0.334
ASE 11.683 7.748 7.319 5.492 15.727 11.860 12.027 10.345

0.20 MSE 0.303 0.465 1.088 0.173 0.397 0.545 1.539 2.874 0.454 0.412
ASE 23.227 14.242 14.847 10.529 34.601 20.970 23.510 18.306

0.30 MSE 0.156 0.534 0.489 0.141 0.366 0.190 1.583 4.603 0.171 0.378
ASE 32.797 26.374 29.880 18.795 50.370 36.818 41.957 31.055

0.35 MSE 0.146 0.523 2.046 0.144 0.324 0.193 1.310 6.464 0.175 0.304
ASE 43.288 38.894 42.613 26.879 61.549 49.826 56.411 40.531

0.40 MSE 0.185 0.567 2.879 0.178 0.313 0.190 1.016 7.661 0.181 0.309
ASE 72.083 52.771 57.891 35.278 72.420 65.500 73.650 51.750

0.45 MSE 0.165 0.499 4.04 0.168 0.267 0.157 0.721 8.483 0.163 0.262
ASE 121.465 67.802 75.012 46.236 87.726 84.667 93.999 67.795

MSE = mean squared error; ASE = average sum of squares; DGP = data generating processes; ELW = exact local
Whittle estimation; MCV = modified cross-validation; HLS = Hurvich et al. (2005) method.

Table 3: MSE and ASE(×1000) for DGP4 with sample size n = 2,000 and n = 5,000

d n = 2,000 n = 5,000
ELW Bimodal MCV Oracle HLS ELW Bimodal MCV Oracle HLS

0.40 MSE 0.096 0.592 5.298 0.115 0.155 0.050 5.350 3.523 0.059 0.062
ASE 58.497 67.460 72.098 46.592 51.439 63.874 62.942 37.671

0.45 MSE 0.077 0.506 7.416 0.102 0.149 0.046 3.375 6.721 0.060 0.065
ASE 81.769 91.124 95.648 61.356 78.854 95.686 89.942 54.041

MSE = mean squared error; ASE = average sum of squares; DGP = data generating processes; ELW = exact local
Whittle estimation; MCV = modified cross-validation; HLS = Hurvich et al. (2005) method.

numerically unstable values. Instead, the bimodal kernel method, which is a continuous analogue of
MCV, seems to be more numerically stable than MCV in this case. ELW performs even better than
the oracle method in some cases, but the true trend is only a constant function so it may do so due to
sampling fluctuations.

When the cyclic trend is considered as in DGP2, however, the oracle method shows the smallest
MSE and ASE as expected. However, observe that our ELW method is closest to the oracle in terms
of MSE for moderate to large LRD parameters. Indeed, the proposed ELW method works well for
estimating the LRD parameter in the presence of a smooth trend. However, the ASE is closest to the
oracle when the bimodal kernel method is used. Observe also that the ASE increases as the LRD
parameter d increases, and coincides with a strong correlation that masks the true trend function.

Table 2 shows the results for DGP3 and DGP4. The overall interpretations are similar to DGP2
with an emphasis that the proposed ELW method is closest to the oracle as LRD parameter d increases.
The ASE is closest to the oracle when the bimodal kernel method is used. However, the proposed
ELW method outperform existing methods if the sample size is increased and the persistency becomes
stronger. For example, Table 3 shows the results for DGP4 with a quadratic trend when the sample
size increases to n = 2,000 and 5,000 with LRD parameters d = 0.4 and d = 0.45, respectively.
Now, the proposed ELW method outperforms MCV and bimodal bandwidth selectors for both LRD
parameter estimation and smooth function estimation. Figure 2 shows the boxplots of ASE and the
estimated LRD parameter for DGP4 with d = 0.4 when the sample size n = 5,000. Bimodal or MCV
methods sometimes find the LRD estimator close to zero, but this may be because the trend function
is oversmoothed due to the smaller bandwidth as already reported in Hall et al. (1995). In summary,
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Figure 2: Time plots of estimated d and ASE for DGP4 with d = 0.4 and sample size n = 5,000. DGP = data
generating processes; ASE = average sum of squares; ELW = exact local Whittle estimation; MCV = modified

cross-validation; HLS = Hurvich et al. (2005) method.

this simulation study shows that the proposed ELW method successfully estimates the long memory
parameter in the presence of a trend. The proposed ELW method particularly outperforms the other
methods as dependency and sample size increase.

4. Real data application

To illustrate our proposed method based on ELW estimation of LRD parameter, we have considered
the volatility of exchange rate between Korean Won (KRW) for one US dollar (USD). The index is
expressed in local currency, that is, in exchange of 1 US dollar to KRW, and we have considered
exchange rate from Jan 1, 2002 to Dec 31, 20013. It is widely recognized that the volatility exhibits
both non-stationary and LRD properties as it is nicely documented in Stărică and Granger (2005).

We study the power-transformed absolute differences,

Yi = |Ii − Ii−1|0.25,

where I denotes the original exchange rate. The total number of observations is 3,027. The reason for
taking a quarter transformation is to make the series close to Gaussian, and studied similarly in the
literature (e.g. Ding et al. (1993)).

Figure 3 represents observations {Yi} (top left) and its corresponding normal QQ-plot (top right),
the sample autocorrelations (SACF) plot (bottom left) and ELW estimator according to frequencies
selected (bottom right). From the visual inspection of plots, first, there is a smooth concave-like
trend in the middle of observations, and also a quarter transformation seems to make the marginal
distribution close to normal. Observe also that the sample autocorrelations decay very slowly and stays
very high even for lag 100. This clearly indicates that our observations are very strongly correlated.
ELW parameter estimates are positive and stay away from zero for wide range of frequencies used, so
we observe both non-stationarity and LRD in the volatility of exchange rate between KRW and USD.

We have applied our proposed method to estimate a smooth trend perturbed by strongly correlated
errors. Figure 4 shows estimated smooth trend and the SACF of absolute residuals. However, it still
shows slowly decaying autocorrealtions that are weaker than the original series. This is also observed
from ELW estimator plot, showing smaller LRD parameter values. The resulting ELW estimator is



620 Yeoyoung Cho, Changryong Baek

2002 2004 2006 2008 2010 2012 2014

0.
5

1.
5

2.
5

3.
5

Volatility of KRW−USD exchange rate

−3 −2 −1 0 1 2 3

0.
5

1.
0

1.
5

2.
0

2.
5

Normal Q−Q Plot

Theoretical Quantiles

0 20 40 60 80 100

0.
15

0.
20

0.
25

0.
30

Lag

SACF

100 200 300 400 500 600

0.
2

0.
4

0.
6

0.
8

1.
0

Frequency

ELW Estimator

Figure 3: The volatility of KRW and USD during 2002–2007 with the SACFs and ELW LRD parameter esti-
mates. SACF = sample autocorrelations; ELW = exact local Whittle estimation; LRD = long-range dependence.
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Figure 4: Estimated smooth trend, correlograms on absolute residuals and ELW estimation from residuals. SACF
= sample autocorrelations; ELW = exact local Whittle estimation.
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d̂ = 0.3325 from bandwidths ĥlw = 0.146 and m̂lw = 233 with 95% confidence interval (0.267, 0.396).
Hence, this analysis shows that volatility of KRW-USD exchange rate has both smooth trend and
stationary LRD errors. This provides an alternative modeling of non-stationary-like observations in
the framework of everlasting debate between changes-in-mean and long memory. See, for example,
Lee et al. (2015), Song and Baek (2019) and references for further discussions.

5. Conclusions

A new tuning parameter selection rule is proposed for the long memory parameter estimation in the
presence of a smooth trend. Tuning parameters are selected by minimizing the single MSE of the
long memory parameter from the residuals. A simulations study shows outstanding performance of
the proposed method. It was closest to the oracle, and outperformed other methods as dependency and
sample size increase. It also remains an interesting future work on extension to bivariate LRD series
as studied in Baek et al. (2020).
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