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Abstract 

 

The estimation of the remaining useful life (RUL) of lithium-ion (Li-ion) batteries is important for intelligent battery 
management system (BMS). Data mining technology is becoming increasingly mature, and the RUL estimation of Li-ion 
batteries based on data-driven prognostics is more accurate with the arrival of the era of big data. However, the support vector 
machine (SVM), which is applied to predict the RUL of Li-ion batteries, uses the traditional single-radial basis kernel function. 
This type of classifier has weak generalization ability, and it easily shows the problem of data migration, which results in 
inaccurate prediction of the RUL of Li-ion batteries. In this study, a novel multi-kernel SVM (MSVM) based on polynomial 
kernel and radial basis kernel function is proposed. Moreover, the particle swarm optimization algorithm is used to search the 
kernel parameters, penalty factor, and weight coefficient of the MSVM model. Finally, this paper utilizes the NASA battery 
dataset to form the observed data sequence for regression prediction. Results show that the improved algorithm not only has 
better prediction accuracy and stronger generalization ability but also decreases training time and computational complexity. 
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I. INTRODUCTION 

Environmental issues triggered by emissions from 
conventional vehicles have accelerated the adaptation of 
electric vehicles (EVs) for urban transportation [1]. 
Lithium-ion (Li-ion) batteries have been widely used in many 
new energy systems as a power source because of their 
high-energy density, long service life, and low pollution. 
Li-ion batteries are used as the energy source for many 
devices. Thus, they are quickly becoming the most common 
power source for EVs [2]. Remaining useful life (RUL) is the 
useful life left on the Li-ion battery at a particular time of 
operation. The estimation of the RUL of Li-ion batteries is 
essential to prognostics and health management (PHM) [3]. 

The batteries are subjected to physical and chemical 
degradation during their operations. The main factors of 
degradation are related to electrode corrosion and electrolyte 
degradation. Some methods have been developed to estimate 
and calculate the state of health (SOH) of battery [4]-[6].  

In recent years, many studies on the degradation model and 
the RUL prediction of Li-ion batteries have been conducted. 
Various techniques and methods are proposed to improve the 
prediction accuracy of the RUL of Li-ion battery. These 
techniques and methods can be divided into two categories, 
namely, model-based prognostics and data-driven 
prognostics. 

Model-based prognostics require a deep understanding of 
the composition of the model, in which mathematical 
expressions are used to describe the complex electrochemical 
process. Moreover, the explicit analysis of the solutions is 
difficult because the model is always non-linear. 
Lumped-element equivalent-circuit components, such as 
resistors and capacitors, are used to represent the behavior of 
a battery cell [7]. Many studies have used Kalman filtering 
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with electrochemical or electrical equivalent-circuit models 
for monitoring, e.g., Refs. [8], [9]. With the development of 
measurement technology and reduced cost, electrochemical 
impedance spectroscopy (EIS), a non-invasive method, has 
been used to characterize battery capacity degradation 
through variations of internal parameters [10]. Ref. [11] 
presents a method based on the internal resistance growth 
model using the particle filtering (PF) approach to estimate 
the RUL of Li-ion batteries. A model-based Bayesian 
approach is proposed in Ref. [12] to predict the RUL for 
these types of batteries. 

Data-driven prognostics consider Li-ion battery as a black 
box without figuring out the complex electrochemical process 
in the model. Thus, the only mathematical laws of the 
historical data of the Li-ion battery should be determined to 
predict its capacity or RUL. Algorithms or related parameters 
are the main factors that affect the accuracy of RUL 
prediction. 

Data-driven prognostics do not need to study the battery 
model directly because all information about Li-ion batteries, 
which is obtained through data analysis, has been fully 
reflected in the collected data. Data-driven prognostics can 
obtain implicit information between the input and output 
through training samples and finally forecast the future trend. 
In the background of big data analysis, data-driven 
prognostics have a good value for the RUL prediction of 
Li-ion batteries. 

With the rapid development of machine-learning 
technology and artificial intelligence (AI), more algorithms 
are used to predict the RUL of Li-ion batteries. For example, 
a data-driven approach using an improved auto regressive 
(AR) model by particle swarm optimization (PSO) for the 
RUL prediction of Li-ion batteries is proposed in Ref. [13]. A 
data-driven approach that combines empirical mode 
decomposition (EMD) and AR integrated moving average 
(ARIMA) model for RUL prognostic is proposed in Ref. [14]. 
In Ref. [15], a data-driven method is developed using the 
unscented Kalman filter (UKF) with relevance vector 
regression (RVR), which is used for RUL and short-term 
capacity prediction of batteries. An intelligent prognostic for 
battery health based on the sample entropy feature of 
discharge voltage is proposed in Ref. [16]. Similarly, particle 
filter (PF) was used to predict RUL and time until the end of 
the discharge voltage of the Li-ion battery in Ref. [17]. In Ref. 
[18], a multistep-ahead prediction model based on the mean 
entropy and relevance vector machine (RVM) is developed 
and applied for SOH and RUL prediction of Li-ion battery. 
An optimized RVM algorithm is used to improve the 
accuracy and stability of RUL estimation in Ref. [19]. In Ref. 
[20], a method that integrates classification and regression 
attributes of support vector (SV)-based machine-learning 
technique for real-time RUL estimation of Li-ion batteries is 
proposed. A method that estimates the SOH of Li-ion battery 

using health condition parameters by support vector 
regression-particle filter (SVR-PF), which has provided a 
good foundation for multi-step ahead prediction, was 
proposed in Ref. [21]. An online approach using feed-forward 
neural network (FFNN) and importance sampling (IS) to 
estimate the RUL of Li-ion battery is presented in Ref. [22]. 
In Ref. [23], a novel RUL prediction method based on the 
Gaussian process mixture (GPM), which can process 
multimodality by fitting different segments of trajectories 
with different Gaussian process regression (GPR) models 
separately, such that the tiny differences among these 
segments can be revealed, is proposed. In Ref. [24], a novel 
PF-based method for the RUL estimation of Li-ion batteries 
is developed by combining Kalman filter and PSO. An 
improved unscented particle filter (IUPF) method, which uses 
the MCMC to solve the problem of sample impoverishment 
in unscented particle filter (UPF) algorithm for the RUL 
prediction of Li-ion battery, is proposed in Ref. [25]. A new 
data-driven prognostic method based on the interacting 
multiple model particle filter (IMMPF) to determine the RUL 
of Li-ion batteries and the probability distribution function 
(PDF) of the associated uncertainty is proposed in Ref. [26]. 

SVM is one of the most powerful and popular 
machine-learning algorithms used to estimate SOH and RUL. 
SVM is combined with a completely new method for data 
processing [27] that can handle non-linear systems and 
outperform ordinary regression because of its insensitivity to 
small changes. Besides, the performance of SVM does not 
directly depend on the dimension of classified entities [28]. 

SVM is popular in many fields, such as financial time 
series and power load forecasting. The selection and 
construction of kernel functions, which have significant 
influence on the efficiency and generalization performance of 
the RUL prediction of Li-ion batteries, is crucial when SVM 
is used to predict the RUL of Li-ion batteries. Moreover, the 
process of training sample selection will affect the quality of 
the RUL prediction of Li-ion batteries. The existing kernel 
function for Li-ion batteries RUL prediction based on SVM is 
the single kernel function. Refs. [18], [29], [30] all used a 
single kernel function without considering its limitations. 
Under certain conditions, the single kernel function shows 
some learning and generalization capability. However, the 
construction of kernel function and the selection of related 
parameters have not been well set up. Several basic forms of 
kernel functions are often used with different mapping 
properties, which show significant performance differences in 
various applications. Using a single kernel function is not 
reasonable when SVM is used to predict the RUL of Li-ion 
batteries. Thus, this study introduces a novel multi-kernel 
SVM with PSO (PSO–MSVM) algorithm to solve the 
limitations of SVM when applied in the RUL prediction of 
Li-ion batteries and to improve the accuracy of the prediction. 

In this contribution, data-driven methods are used to  
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Fig. 1. Curves of different test points for RBF and Polynomial kernel. 
 

predict the RUL of Li-ion batteries using PSO–MSVM, 

which not only improves the accuracy of prediction but also 
decreases training time and computational complexity. The 
rest of this article is organized as follows. Section II 
introduces the concept of SVM and MSVM algorithm. 
Section III proposes a practical optimized method to conduct 
the global optimal search on the key parameters, and further 
improves the prediction accuracy and calculation speed of the 
MSVM model. Section IV verifies the PSO–MSVM 
algorithm based on the NASA battery dataset and analyzes 
the prediction results. Finally, Section V summarizes the 
paper. 

 

II. MULTI-KERNEL SVM LEARNING ALGORITHM 

A. Support Vector Machine (SVM) 

This section introduces some basic theories of SVM. SVM 
aims to establish an optimal separating hyper-plane as the 
decision plane by maximizing the distance between positive 
and negative examples [31], [32]. 

Given a training dataset		ܳ ൌ ൛ܠ௝, ௝ൟ௝ୀଵݕ
௡

, ൫ܠ௝ ∈ R୬, y௝ ∈

R൯,	 ܠ௝ is the j-th input feature vector, ݕ௝		is the class label 

of		݆ܠ, and n is the number of all samples. 

When the training sample is completed, an optimal 
hyper-plane can be established as follows: 

ሻܠሺ݌  ൌ ்ܟ ∙ ߶ሺܠሻ ൅ ܾ,               (1) 
where the function of ߶ሺܠሻ is used to map the input feature 
vector into high-dimensional feature space, b is a bias term, w 
is a vector of the hyper-plane. The estimated values of b and 
w can be obtained by solving the following quadratic 
programs: 

	min 		ܶሺܟ, ܾ, ሻߝ ൌ
ଵ

ଶ
ଶ‖ܟ‖ ൅ ܥ ∑ ௝ߝ

௡
௝ୀଵ ,          (2) 

    s. t.			ݕ௝൫்ܟ ∙ ߶൫ܠ௝൯ ൅ ܾ൯ ൒ 1 െ ݆				௝ߝ ൌ 1,… , ݊,  (3) 

and 
௝ߝ		    	൒ 0				݆ ൌ 1,… , ݊.             (4) 

The Lagrangian of the quadratic program in (2)–(4) is 

,ܟሺܮ ,ߝ ܾ; ሻࢻ ൌ 	ܶሺܟ, ,ߝ ܾሻ െ ∑ ்ܟ௝൫ݕ௝൛ߙ ∙௡
௝ୀଵ

߶൫ܠ௝൯ ൅ ܾ൯ ൅ ௝ߝ െ 1ൟ െ ∑ ௝ߝ௝ߤ
௡
௝ୀଵ .    (5) 

Taking partial derivatives of		ܮሺܟ, ,ߝ ܾ;  ሻ with respect toࢻ
the primal variables and substituting the results 
into	ܮሺܟ, ,ߝ ܾ;  ሻ in (5) results in the dual formulation of theࢻ
SVM: 

max 		 ,ܟሺܮ ,ߝ ܾ; ሻࢻ ൌ

ቄ∑ ௝ߙ െ
ଵ

ଶ
௡
௝ୀଵ ∑ ௜ݕ௝ߙ௜ߙ

௡
௜,௝ୀଵ ,௜ܠ൫ܭ௝ݕ  ,        (6)			௝൯ቅܠ

.ݏ 			.ݐ ∑ ௝ݕ
௡
௝ୀଵ ௝ߙ ൌ 0 ,                      (7) 

and 
0 ൑ ௝ߙ ൑ ݆				ܥ ൌ 1,… , ݊,               (8) 

where 	ߙ௝	is the Lagrange multiplier of observation j, and the 

inner product function	ܭ൫ܠ௜,  .௝൯ is called the kernel functionܠ

High-dimensional feature space in the inner product can 
implicitly operate by introducing the kernel function of the 
original space.  

The computation of SVM can be simplified by transferring 
the problem with the Kuhn–Tucker condition into the 
equivalent Lagrange dual problem. Therefore, the linear 
decision function is obtained by solving the dual optimization 
problem, and the SVM problem can be simplified as follows: 

ሻܠሺ݌   ൌ sgn൫∑ ,௝ܠ൫ܭ௝ݕ௝ߙ ൯ܠ ൅ ܾ௡
௝ୀଵ ൯.       (9) 

The SVM is widely used not only in classification problems 
but also in regression problems, which are difficult 
classification problems in essence. SVM has many advantages, 
such as good robustness, simple calculation, wide universality, 
and perfect theory.  

B. Multi-Kernel SVM Learning Algorithm 

The selection of the kernel function of the model is very 
important when SVM is used to predict the RUL of Li-ion 
battery. The use of SVM with different kernel functions will 
form different prediction models, which will produce different 
prediction accuracies and efficiencies. 

The two types of kernel functions commonly used in SVM 
are global kernel and local kernel. 

Radial basis function (RBF) kernel is a typical local kernel. 
Its mathematical form is defined as follows [33]: 

,௜ܠோ஻ி൫ܭ ௝൯ܠ ൌ exp ቀെ
ଵ

ଶఙమ
ฮܠ௜ െ ௝ฮܠ

ଶ
ቁ	,     (10) 

where ߪ is the parameter of the kernel. 
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Polynomial kernel is a typical global kernel, which is 
defined as follows [34]: 

௝൯ܠ,௜ܠ௣௢௟௬൫ܭ	    ൌ ൫ܠ௜
௝ܠ் ൅ 1൯

ௗ
,            (11) 

where d is the kernel parameter. 
Fig. 1 shows the effect of function kernel in different 

parameter values. RBF kernel has local characteristics and has 
better learning capability. Moreover, the polynomial kernel 
function has global characteristics and has strong 
generalization performance. The performance and complexity 
of the RUL prediction model of the Li-ion battery are 
determined by the kernel function. 

Smits proposed that improving the performance of SVM 
using only a single kernel function is difficult [35]. In this 
paper, an MSVM is proposed to improve the prediction 
accuracy and generalization capability of SVM. The kernel 
function of MSVM is composed of the local kernel function 
 :௣௢௟௬ܭ	and the global kernel function	ோ஻ிܭ

௡௘௪ܭ			  ൌ ோ஻ிܭ߬ ൅ ሺ1 െ ߬ሻܭ௣௢௟௬										ሺ	0 ൏ τ ൏ 1	ሻ, (12) 

where ߬ is the weight coefficient. The kernel function must 
satisfy Mercer’s theorem, which can be used as the kernel of 
SVM. The multi-kernel function		ܭ௡௘௪	, which is formed by 
the convex combination of ܭோ஻ி and	ܭ௣௢௟௬, also satisfies the 

Mercer’s theorem. 
Fig. 2 shows the effect of the multi-kernel function for the 

selected test point x = 0.2 in different parameter values τ =0.5, 
0.6, 0.7, 0.8, 0.9, among which σ =0.2, d = 2. The 
multi-kernel function integrates all the characteristics of a 
traditional single kernel and has improved distribution 
performance in different datasets. 

When τ approaches 0, the polynomial kernel function has a 
stronger influence on the multi-kernel function, showing the 
global generalization performance of the polynomial kernel 
function. When τ approaches 1, the RBF kernel has a greater 
influence on the multi-kernel kernel function, showing the 
local fitting performance of the RBF kernel. In the RUL 
prediction of Li-ion batteries, the weight coefficient τ must be 
adjusted so that the MSVM is adapted to different data 
distributions. 

 

III. PARTICLE SWARM OPTIMIZATION 
ALGORITHM 

Section II shows several important parameters	 in the 
MSVM model, such as C, ߪ, d, and τ. The function of the 
penalty constant C is to find the proper balance between 
separating error and computational complexity. The 
characteristics of the training data are reflected by the kernel 
functions	ߪ	and d. The weight coefficient τ is used to assign 
the weight for ܭோ஻ி	and	ܭ௣௢௟௬. All four parameters have direct 

effects on the performance of the MSVM model. However, for 
a given problem, it is not known which parameters are optimal 
in advance. Therefore, the parameters must be optimized 
before training the MSVM model so that the model can  

 
Fig. 2. Test curve of a multi-kernel function. 

 
accurately predict the unknown data. 

Grid algorithm is used to optimize the penalty constant C 
and	ߪ	of the RBF in Ref. [36]. However, the feature subset in 
the grid algorithm cannot be selected at the same time. In Ref. 
[37], the selection of the feature subset and model parameter 
for SVM are optimized by GA. 

Inspired by the social behavior in nature, PSO, which was 
proposed by Kennedy and Eberhart [38, 39], is adopted to 
optimize the parameters of MSVM prediction model in this 
study. 

Similar to other evolutionary algorithms, the PSO algorithm 
uses a particle swarm to operate. Each particle has two features, 
namely, its own position and speed, and represents a solution 
to a problem in the decision space. The current value in the 
solution is represented by the position, and the direction and 
distance of the optimal position in the next iteration is defined 
by velocity.  

Each particle changes its search direction based on two 
factors, namely, its own best previous experience and its best 
solution in all other members to find the optimal solution [40].  

Supposing that n particles formed a population of X ൌ
ሺ ଵܺ, ܺଶ, …ܺ௡ሻ in M-dimensional space. The M-dimensional 
position of the particle j at iteration d can be expressed 

as	ݔ௝
ௗ ൌ ൛ݔ௝ଵ

ௗ , ௝ଶݔ
ௗ , … ௝ெݔ

ௗ ൟ . Likewise, the velocity, which is also 

an M-dimensional vector, for particle j at iteration d can be 

expressed as	ݒ௝
ௗ ൌ ൛ݒ௝ଵ

ௗ , ௝ଶݒ
ௗ , … ௝ெݒ

ௗ ൟ. Let	݌௝
ௗ ൌ ൛݌௝ଵ

ௗ , ௝ଶ݌
ௗ , … ௝ெ݌

ௗ ൟ 

be the optimal solution that particle j has obtained until 

iteration d, and ݌௚ௗ ൌ ൛݌௚ଵ
ௗ , ௚ଶ݌

ௗ , … ௚ெ݌
ௗ ൟis the optimal solution 

obtained from ݌ௗ
௝ 	in the population at iteration d.  

In each iteration process, the position and velocity of each 
particle are updated according to the individual extremum and 
the global extremum. The updating formula is as follows: 

				 ௝ܸ௠
ௗାଵ ൌ γ ௝ܸ௠

ௗ ൅ ܿଵݎଵ൫ ௝ܲ௠
ௗ െ ௝ܺ௠

ௗ ൯ ൅ ܿଶݎଶ൫ ௚ܲ௠
ௗ െ ௝ܺ௠

ௗ ൯	, (13) 

and 

									 ௝ܺ௠
ௗାଵ ൌ ௝ܺ௠

ௗ ൅ ௝ܸ௠
ௗାଵ	,         (14)  

where γ is the inertia weight, ݉ ൌ 1,2, …  d is the current ,ܯ,
iteration, ܿଵ  and ܿଶ  are constants called acceleration 

coefficients, ݎଵ and 2ݎ  are random numbers that follow the 

uniform distribution (0,1), ௝ܺ௠
ௗ  is the previous position and its  
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Fig. 3. Flowchart of PSO algorithm. 
 
value is limited within the interval 

ൣ– ܺ௠௔௫, ܺ௠௔௫൧, and	 ௝ܸ௠
ௗ 	indicates the previous velocity, which 

is limited within the interval of ሾെ ௠ܸ௔௫, ௠ܸ௔௫ሿ. 
The basic process of the PSO algorithm mainly consists of 

five steps, namely, initialization, fitness evaluate, particle 
velocity update, construction, and stopping criteria. Each step 
is defined as follows: 
Basic process of PSO algorithm 

STEP 1. (Initialization) Randomly initialize the population 
positions and velocities. 

STEP 2. (Evaluate the fitness) Evaluate the fitness of each 
particle. 

STEP 3. (Update particle velocity) Calculate the velocity of 
each particle in the population according to 
Formula (13). 

STEP 4. (Construction) Calculate the next position of each 
particle according to the Formula (14). 

STEP 5. (Stopping Criteria) If the stopping criterion is 
satisfied, then stop the PSO algorithm. Otherwise, 
return to STEP 2. 

The iteration ends when the number of iterations reaches the 
maximum number, which was set in advance. 

 Fig. 3 shows the computation flowchart for clarity. 
 

IV. PSO–MSVM FOR RUL ESTIMATION OF LI-ION 

BATTERIES 

The principle of the PSO–MSVM algorithm can be obtained 
based on the aforementioned analysis presented in the 
flowchart in Fig. 4. 

A. Feature Extraction and Selection 

The operational parameters that change with the aging of 
the Li-ion battery should be determined to provide a good  

 
Fig. 4. Flowchart of PSO–MSVM algorithm. 
 

 
Fig. 5. Internal impedance change curve of Nos. 5 and 7 batteries. 

 
indication of the SOH of the Li-ion battery. The accuracy of 
the SOH estimation and RUL prediction of the Li-ion battery 
will heavily rely on these features [41]. From the raw data of 
the Li-ion battery from NASA, a large number of features can 
be extracted. However, not all of these features are associated 
with the RUL of Li-ion batteries. To date, several features have 
been extracted based on three different conditions, namely, 
charge, discharge, and impedance. 

Although the impedance data are accurate, they are difficult 
to obtain in practical application [35] because the battery must 
be isolated from the application and electrochemical 
impedance spectroscopy (EIS) must be employed to measure 
the AC current. Although the impedance data can be provided 
by NASA (see Fig. 5), these data are difficult to collect online. 
Moreover, the measurement of the internal impedance of the 
Li-ion battery requires a battery model, and the choice of the 
model directly affects the accuracy of the internal resistance 
data of the Li-ion battery. The internal impedance measured by 
the battery model is used to predict the Li-ion battery RUL, 
which significantly reduces prediction accuracy. Therefore, in 
this study, the internal impedance cannot be used to predict the 
RUL of the Li-ion battery. 
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Fig. 6. Capacity change curve of Nos. 5 and 7 batteries.  

 

 
 

Fig. 7. Voltage curves of different discharge cycles. 

 
Fig. 6 shows that the capacity change curve of Nos. 5 and 7 

batteries in discharge cycles are consistent. The Li-ion battery 
capacity refers to the amount of current that it can supply over 
time. During the charging and discharging cycles of Li-ion 
batteries, the capacity decays over time, which is a good way 
to measure its health. Some spikes are observed in the capacity 
decay process of Li-ion batteries. These spikes are rest periods 
of varying lengths in which the capacity appears to increase 
because the battery test bed has time to be rebalanced [41]. 
However, these spikes do not affect the RUL prediction of the 
Li-ion battery because the information of capacity in the use of 
the process has a very consistent trend. This paper will use 
capacity as a feature for the RUL estimation of Li-ion 
batteries. 

When the PSO–MSVM algorithm is used to train the Li-ion 
battery data, the data feature extraction and selection directly 
affects the accuracy of the prediction. Fig. 7 shows that the 
discharging voltage curve of each discharge cycle is different. 
This study selects 500, 1000, 1500, and 2000 s voltage values 
of each discharge cycle as input data sequence, and the 
corresponding capacity of each discharge cycle was selected 
as the output. 

B. Li-ion Battery RUL Prediction 

The Li-ion battery data used in this study are obtained from 
the NASA Prognostics Center of Excellence (PCoE) [42], 
which uses a battery prediction test bench and 18,650 
rechargeable batteries sold on the market to collect battery 
charge and discharge data [43]. The Li-ion batteries operate at 
room temperature in three different operating conditions, 
namely, charge, discharge, and full impedance. 

Charge mode: Charging was implemented in a constant 
current mode of 1.5 A until the battery voltage reached 4.2 V, 
and then maintained a constant voltage mode until the charge 
current is reduced to 20 mA. 

Discharge mode: Discharging was conducted at a constant 
current level of 2 A until the battery voltage dropped to 2.7 and 
2.2 V for battery Nos. 5 and 7, respectively. 

Repeated charge and discharge cycles are the main causes of 
the accelerated fading of a battery. When Li-ion batteries 
reached up to 30% rated capacity aging (this experiment is 
from 2 Ah to 1.4 Ah), the experiments were stopped and the 
Li-ion batteries were considered to have reached their end of 
life. 

Using the NASA Li-ion battery data, this study extracts the 
data on the discharge cycle to validate our algorithm. The data 
are divided into two parts, for training and testing the model. 

This paper provides the following definitions: RSVM is the 
SVM algorithm with RBF kernel, PSVM is the SVM 
algorithm with polynomial kernel, MSVM is the SVM 
algorithm multi-kernel expressed by Equation (12), and PSO–
MSVM is the MSVM optimized by the PSO algorithm. 

To verify the superiority of PSO–MSVM, this study is 
described from the following aspects: 

First, this study uses different numbers of training data to 
train RSVM, PSVM, MSVM, and PSO–MSVM. 

Second, this study compares the prediction accuracy of 
RSVM, PSVM, MSVM, and PSO–MSVM under the same 
training data. 

Fig. 6 shows that the actual end of the lifetime of battery No. 
5 is cycle 168, but at this point, the capacity of battery No.7 
has not dropped to the failure threshold. Furthermore, this 
paper focuses on the RUL prediction for the former and the 
capacity estimation for the latter. RUL prediction and capacity 
estimation both can verify the predictive ability of these 
algorithms. Samples 1–80 and 1–112 are selected as the 
training dataset, and samples 81–168 and 113–168 are used to 
predict the validation to verify the accuracy of the proposed 
model for predicting the RUL of Li-ion batteries. When the 
remaining capacity of the battery reaches the threshold, the 
end of the battery lifetime is reached. 

Figs. 8 and 9 show the RUL prediction of battery No. 5 
under different training samples and the predicted results in 
RSVM, PSVM, MSVM, and PSO–MSVM. 

For battery No. 5, this paper defines the following: 
ܧܣ   ൌ ܮܷܴ| െ  (15)                 ,|ܮܷܴܲ
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Fig. 8. Predicted results in RSVM, PSVM, MSVM, and PSO–
MSVM using 80 sets of training data (Battery No. 5). 
 

 
Fig. 9. Predicted results of RSVM, PSVM, MSVM and PSO–
MSVM using 112 sets of training data (Battery No. 5). 
 

TABLE I 
COMPARISON OF CALCULATION RESULTS IN SVM AMONG 

DIFFERENT KERNEL FUNCTIONS (BATTERY NO. 5) 

Kernel 
Function 

TS RUL PRUL AE RE/%

RSVM 
80 44 56 12 27.28

112 12 15 3 25.00

PSVM 
80 44 62 18 40.91

112 12 8 4 33.33

MSVM 
80 44 49 5 11.36

112 12 13 1 8.33 
PSO–

MSVM 
80 44 46 2 4.55 

112 12 12 0 0 
 

and 

ܧܴ     ൌ
|ோ௎௅ି௉ோ௎௅|

ோ௎௅
ൈ 100%,               (16) 

where RUL is the real RUL value and PRUL is the predicted 
RUL value, all of which are indexes of prediction performance. 
TS is the number of training samples. Table I shows the 
comparison of calculation results in SVM among the different 
kernel functions. 

Figs. 8-9 and Table I show that the RE of PSO–MSVM is 
smaller than that of RSVM, PSVM, and MSVM with the same 
TS. For example, with the TS of cycle 80, the RE of PSO– 

 
 

Fig. 10. Predicted results of RSVM, PSVM, MSVM, and PSO–
MSVM using 80 sets of training data (Battery No. 7). 

 

 
 

Fig 11. Predicted results in RSVM, PSVM, MSVM, and PSO–
MSVM using 112 sets of training data (Battery No. 7). 
 

MSVM is 4.55%, whereas the RE of RSVM, PSVM, and 
MSVM is 27.28%, 40.91%, and 11.36%, respectively. 
Therefore, PSO–MSVM has better prediction performance in 
which the errors are all less than 5% with different TS. 

Figs. 10 and 11 show the capacity estimation of battery No. 
7 under different training samples and the predicted results of 
RSVM, PSVM, MSVM, and PSO–MSVM. 

For battery No. 7, this paper defines the following: 

ܧܵܯ      ൌ ට
ଵ

௡
∑ ሺݕ௜ െ ௜ሻ௡ݕ݌
௜ୀଵ ,            (17) 

where ݕ௜  is the true capacity value and ݕ݌௜  is the forecast 
capacity value. TS is the number of training samples. CC is the 
correlation coefficient. OT is the operating time of the 
prediction algorithm. Table II shows the comparison of 
calculation results in SVM among the different kernel 
functions.  

Figs. 10-11 and Table II show that the CC of PSO–MSVM 
is larger than that of RSVM, PSVM, and MSVM with the 
same TS. For example, with the TS of cycle 112, the CC of 
PSO–MSVM is 0.9902, whereas the CC of RSVM, PSVM, 
and MSVM is 0.9136, 0.8990, and 0.9796, respectively. 
Moreover, the MSE of PSO–MSVM is smaller than that of 
RSVM, PSVM, and MSVM with the same TS. For example, 
with the TS of cycle 80, the MSE of PSO–MSVM is 0.0213,  
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TABLE II 
COMPARISON OF CALCULATION RESULTS IN SVM AMONG 

DIFFERENT KERNEL FUNCTIONS (BATTERY NO. 7) 

Kernel 
function 

TS CC MSE OT/ms 

RSVM 
80 0.8921 0.0313 413.16 
112 0.9136 0.0271 503.21 

PSVM 
80 0.8703 0.0408 475.28 

112 0.8990 0.0395 567.15 

MSVM 
80 0.9535 0.0263 390.68 
112 0.9796 0.0231 458.54 

PSO–
MSVM 

80 0.9811 0.0213 310.36 
112 0.9902 0.0154 350.25 

 
whereas the CC of RSVM, PSVM, and MSVM is 0.0313, 
0.0408, and 0.0263, respectively. Furthermore, the operating 
time of PSO–MSVM is shorter than that of RSVM, PSVM, 
and MSVM. Therefore, the RUL prediction and capacity 
estimation of the Li-ion battery of the PSO–MSVM model is 
better than that of the other models. 

 By comparing Figs. 8 and 10 and Figs. 9 and 11, when the 
RSVM and PSVM are used to predict the RUL of Li-ion 
batteries using different datasets, all datasets show very poor 
robustness, whereas MSVM and PSO–MSVM show very 
good robustness. 

In other words, PSO–MSVM has better prediction accuracy 
and stronger generalization capability, and can reduce the 
training time and computational complexity. 

 
V. CONCLUSIONS 

The main contributions of this study can be summarized as 
follows: 

This paper proposes a PSO–MSVM model to solve the 
difficulty in predicting the RUL of Li-ion batteries. The 
advantages of global kernel and local kernel functions are fully 
considered in this model. An MSVM is constructed using the 
convex combination of the RBF and polynomial kernels. 
Moreover, the PSO algorithm is adopted to optimize the 
parameters of the MSVM model. Subsequently, this paper 
trains the PSO–MSVM model by using the Li-ion battery data 
from NASA PCoE. The trained model is used to predict the 
capacity and RUL of Li-ion batteries. By comparing the 
aforementioned forecast results among RSVM, PSVM, 
MSVM, and PSO–MSVM, the proposed method shows better 
RUL prediction and capacity estimation performance than 
other traditional single-kernel SVMs in Li-ion batteries. 

Compared with conventional single-kernel SVM, the PSO–
MSVM model has better prediction accuracy and strong 
generalization performance in different situations, and its MSE 
is less than 3%. Moreover, the PSO–MSVM model can also 
reduce training time and computational complexity. The 
method proposed in this study can provide reliable data for the 

BMS and other safety systems, and can accurately predict the 
RUL of Li-ion batteries. 

The future work of this study aims to improve the accuracy 
and efficiency of the PSO–MSVM model. In addition, efforts 
will be exerted to develop the structure of the kernel function 
with three kernel functions. Furthermore, experiments will be 
conducted to collect realistic datasets of the Li-ion battery of 
EVs, and the realistic datasets will be used to verify the 
efficiency of the PSO–MSVM model.  
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