• Title/Summary/Keyword: kernel operator

Search Result 88, Processing Time 0.028 seconds

PDE-PRESERVING PROPERTIES

  • PETERSSON HENRIK
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.573-597
    • /
    • 2005
  • A continuous linear operator T, on the space of entire functions in d variables, is PDE-preserving for a given set $\mathbb{P}\;\subseteq\;\mathbb{C}|\xi_{1},\ldots,\xi_{d}|$ of polynomials if it maps every kernel-set ker P(D), $P\;{\in}\;\mathbb{P}$, invariantly. It is clear that the set $\mathbb{O}({\mathbb{P}})$ of PDE-preserving operators for $\mathbb{P}$ forms an algebra under composition. We study and link properties and structures on the operator side $\mathbb{O}({\mathbb{P}})$ versus the corresponding family $\mathbb{P}$ of polynomials. For our purposes, we introduce notions such as the PDE-preserving hull and basic sets for a given set $\mathbb{P}$ which, roughly, is the largest, respectively a minimal, collection of polynomials that generate all the PDE-preserving operators for $\mathbb{P}$. We also describe PDE-preserving operators via a kernel theorem. We apply Hilbert's Nullstellensatz.

HYPONORMAL SINGULAR INTEGRAL OPERATORS WITH CAUCHY KERNEL ON L2

  • Nakazi, Takahiko
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.787-798
    • /
    • 2018
  • For $1{\leq}p{\leq}{\infty}$, let $H^p$ be the usual Hardy space on the unit circle. When ${\alpha}$ and ${\beta}$ are bounded functions, a singular integral operator $S_{{\alpha},{\beta}}$ is defined as the following: $S_{{\alpha},{\beta}}(f+{\bar{g}})={\alpha}f+{\beta}{\bar{g}}(f{\in}H^p,\;g{\in}zH^p)$. When p = 2, we study the hyponormality of $S_{{\alpha},{\beta}}$ when ${\alpha}$ and ${\beta}$ are some special functions.

FREDHOLM-VOLTERRA INTEGRAL EQUATION WITH SINGULAR KERNEL

  • Darwish, M.A.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.163-174
    • /
    • 1999
  • The purpose of this paper is to obtain the solution of Fredholm-Volterra integral equation with singular kernel in the space $L_2(-1, 1)\times C(0,T), 0 \leq t \leq T< \infty$, under certain conditions,. The numerical method is used to solve the Fredholm integral equation of the second kind with weak singular kernel using the Toeplitz matrices. Also the error estimate is computed and some numerical examples are computed using the MathCad package.

APPLICATIONS OF THE REPRODUCING KERNEL THEORY TO INVERSE PROBLEMS

  • Saitoh, Saburou
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.371-383
    • /
    • 2001
  • In this survey article, we shall introduce the applications of the theory of reproducing kernels to inverse problems. At the same time, we shall present some operator versions of our fundamental general theory for linear transforms in the framework of Hilbert spaces.

  • PDF

AN ELEMENTARY COMPUTATION OF HANKEL MATRICES ON THE UNIT DISC

  • Chung, Young-Bok
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.691-700
    • /
    • 2021
  • In this paper, we compute directly the Hankel matrix representation of the Hankel operator on the Hardy space of the unit disc without using any classical kernel functions with respect to special orthonormal bases for the Hardy space and its orthogonal complement. This gives an elementary proof for the formula.

RICHARDSON EXTRAPOLATION OF ITERATED DISCRETE COLLOCATION METHOD FOR EIGENVALUE PROBLEM OF A TWO DIMENSIONAL COMPACT INTEGRAL OPERATOR

  • Panigrahi, Bijaya Laxmi;Nelakanti, Gnaneshwar
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.567-584
    • /
    • 2014
  • In this paper, we consider approximation of eigenelements of a two dimensional compact integral operator with a smooth kernel by discrete collocation and iterated discrete collocation methods. By choosing numerical quadrature appropriately, we obtain convergence rates for gap between the spectral subspaces, and also we obtain superconvergence rates for eigenvalues and iterated eigenvectors. We then apply Richardson extrapolation to obtain further improved error bounds for the eigenvalues. Numerical examples are presented to illustrate theoretical estimates.

ON THE SPECTRAL MAXIMAL SPACES OF A MULTIPLICATION OPERATOR

  • Park, Jae-Chul;Yoo, Jong-Kwang
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.205-216
    • /
    • 1996
  • In [13], Ptak and Vrbova proved that if T is a bounded normal operator T on a complex Hilbert space H, then the ranges of the spectral projections can be represented in the form $$ \varepsilon(F)H = \bigcap_{\lambda\notinF} (T - \lambda I) H for all closed subsets F of C, $$ where $\varepsilon$ denotes the spectral measure associated with T.

  • PDF

Applied linear and nonlinear statistical models for evaluating strength of Geopolymer concrete

  • Prem, Prabhat Ranjan;Thirumalaiselvi, A.;Verma, Mohit
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.7-17
    • /
    • 2019
  • The complex phenomenon of the bond formation in geopolymer is not well understood and therefore, difficult to model. This paper present applied statistical models for evaluating the compressive strength of geopolymer. The applied statistical models studied are divided into three different categories - linear regression [least absolute shrinkage and selection operator (LASSO) and elastic net], tree regression [decision and bagging tree] and kernel methods (support vector regression (SVR), kernel ridge regression (KRR), Gaussian process regression (GPR), relevance vector machine (RVM)]. The performance of the methods is compared in terms of error indices, computational effort, convergence and residuals. Based on the present study, kernel based methods (GPR and KRR) are recommended for evaluating compressive strength of Geopolymer concrete.