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A QUADRATURE METHOD FOR
LOGARITHMIC-KERNEL INTEGRAL
EQUATIONS ON CLOSED CURVES

YOUuNGMOK JEON AND HA-JINE KIMN

1. Introduction

Consider a Symm'’s integral equation:
(1.1) Lu(P)=f(P), PeT

where
1 ‘
Lu(P) := - /log |P — Qlu(Q)dTg.
JT

We assume that I' is the smooth boundary of a simply connected
bounded region 2, and it is of Capacity(I') # 1. Equation (1.1) is
derived when we use the single layer potential for a boundary element
method of Laplace equation with the Dirichlet boundary data.

Consider a parameterization P = ~(¢) with |y'(t)] # 0. We obtain
a parameterized equation of equation (1.1):

(1.2) Cu(t) = f(t), 0t <1,

where

£u(t) = 2 [ Tog a(1) = (s u(s)ds

with f(t) == f(y(t)) and u(t) := u(y(t))ly'(1)|/(27).
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Introduce a well-known isometry operator 4 : H* — H**! s ¢ R,
where H* is a periodic Sobolev space (see §2 for H*:

1
(1.3) Au(t) = -2 / log |2¢ V2 sin(n(t — s))|u(s)ds.
Jo

Note that A = £ when T is the circle of radius e~'’2. For a general
smooth boundary, the operator £ in (1.2) can be expressed as a sum
of A and its compact perturbation.

(1.4) L=A-+B,

where

1) — 7(s) u(s)ds.

1
(1.5) Bu(t) := “2/0 log 2¢=1/*sin(7(t — s))

The operator B has a smooth kernel for a smooth boundary I', and
it has little effect on our numerical analysis (see Theorem 3.1 in §3).
Therefore, the operator A is of our main concern for numerical analysis.

Sloan and Burn [6] considered a numerical method (a fully discrete
qualocation method):

(1.6) (Lrup, x)n = (fOns x € Sy
where

N—1 1
(1.7) Lrup(t) = —2h Z log |v(t) = y(kR)|un(kt), h= ¥

and the J— point discrete inner product is defined as

N-—1

J
(1.8) (fo0)n:=h Y Y w,(f Pkh+Eh)

k=0

=]

.

with

J
Z =1, w; >0.
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The trial function uj is a trigonometric function of degree N, and St
is the space of smoothest splines of order r with nodes {kh}i\j:"ol. The
discrete inner product (-, ), is a quadrature approximation of the usual
inner product (-,-) in L,. Note that smoothest splines of order 1 (5})
consist of piecewise constant functions, and splines of order 2 (S?) have

a base {vg,v1, - ,vN_1} consisting of hat functions such that

(1.9) vk(a:):{ 1—|e—kh|/h, (k—1)h <z < (k+1)h,

0, otherwise.

Splines of order 4 (S}) are the cubic splines that can be found in an
ordinary numerical text book. By using these local basis, the numerical
method (1.6) can be chiefly implemented. Moreover, if one uses one
point quadrature rule, J = 1 in (1.8), the method (1.6) is reduced to a
discrete collocation method [6].

Sloan and Burn [6] have proved that at best,

lu —uplle < CR||ul|iqs, t > ~1

for u € H'"® when S} is used as test functions and when J = 2 with
special abscissas {; = 1/6 and £ = 5/6 is used for the discrete inner
product (-,-);. Here | - |5 is the norm in H®. Moreover, Saranen and
Sloan [5] proposed a modified method of (1.6)

(1.10) (Laun, X)n = (f,x), x € S
and they could show that at best
”u - uh”t S Chmjn{ryz}”u“t—{—min{r,S}v t Z -r = ]-s

for up € S} when the same discrete inner product as the above is
applied. Then u can be well approximated even when u has poorer
regularity ( e.g. wu is the Dirac delta function). They also noticed
that the methods (1.6) and (1.10) can be interpreted as a projection
method: that is, equations (1.6) and (1.10) are

PrLyup = Pyf
PuLyuy = Phf,
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respectively with properly defined projections P, and Py.. The use of
projections makes more concise analysis possible.

In this paper we consider an approximation operator £}, a modifi-
cation of L by the subtraction of a singularity:

(1.11) » = A} + By,

where

(1.12)
N-—1

Ajup :=—2h )" log|2e ™' Zsin(n(t - kh))|(un(kh) - un(t)) + ua(t),
k=0

and By, is a rectangular rule approximation of B. Clearly, £ is a better
approximation to £ than £, is. Our method is: find uj so that

(113) (‘Czuha)()h = (f?X)h

In implementing (1.13), we need to evaluate up at other points than
node points. It will be evaluated by the Dirichlet kernel interpolation
formula,

(1.14) o
b SRR ) ol
up(t) =

h Zz;(l) cos(t — mh)%%guh(mh)’ N : even.

With our modified method, we have an improved convergence
(1.15) llu — uplle < CR®||u)|1gs, t > —1,

when S} is used as test functions, and when the quadrature method
induced by a symmetric two point quadrature rule with the abscissas
£, = .2308296503, £, = 1 — ¢4, is used for the discrete inner product.

This paper is organised in the following way: in §2 we introduce
qualocation operators induced by the discrete inner product (1.8); in §3
an abstract numerical analysis for general pseudodifferential operators
1s given; using the abstract analysis, we give convergence and stability
analysis of our method (1.13) in §4. We give results of our numerical
experiments in §5.
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2. Smooth splines and qualocation operators
Let H® be the Sobolev space of periodic functions on [0, 1] with
norm

o

(2.1) 1A= Y mPlfm)P + F0) <

m=-—o00,m70

where
(22) f(t) — Z f'(m)ezmm!
and
R _ 1 4
(2.3) f(m)=(f, e2mmt) _ / f(t)f:_z”'mtdt_
0

Here the equality in (2.2) holds in the sense of distribution where the
sum is interpreted as the limit of the symmetric partial sum for f €
H°® (s <1/2). The integral in (2.3) is understood as a duality paring
in case f € H* (s < 0). For simplicity of notations, let

(2.4) Pi(t) := 2™kt

Let Ap = {k| = N/2 <k < N/2,N :even}or {k] - (N -1)/2 <k <
(N —1)/2,N :0dd}, and let A} = A,/{0}. The space of trigonometric
polynomials of degree < N, T}, is

(2.5) Th = span{dx}ren, -

Introduce the orthogonal projection Py in L such that

(2.6) Pyf(t)= Y f(m)gm(t).
meA,
Then Py and T}, have the following useful properties:

1. ||8]ls < C'h(t")HqS”t for ¢t < sif ¢ € Ty, (the inverse estimate),
2. |If = Pnflle < CRE=Y|f||, for t < s and f € H® (an approxi-
mation property).
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We introduce the Fourier series representation for 1-periodic smoo-
thest spline functions of order r on evenly spaced nodes, {kh};cw:"ﬂl.
This is equivalent to the one introduced in §1 (see (1.9)), but it will let
us take advantages of the Fourier series analysis.

(2.7) Sy = span{vi}rea,
with

k=0

1
(28) vilt) = { Sk (E) 0m(t) k€A

where m = k means that m — k is a multiple of N. Introduce

(29)  FrEm =Y ——ou) = GF (&)~ iHF(€n)
ez 11+

(2.10) =3 f;i” #(€) = G (Em) +iH  (£.n)
lez*

where Z is the space of integers and Z* = Z/{0}. The functions, G*
and H* will be explained in Remark 1. Let

(2.11) Ar(é,n) =n"FE(€m)

where + and — sign hold when r is even or odd, respectively. Then we
can rewrite ¥x(t) as

/ B 1 k :30
(2.12) Vi(t) = { or(t)[1 4+ A, (Nt kh)] ke A

Define a qualocation operator Py : H® — T}j by

(2.13) Py(f) =Y (f,vu)ndk.

kEA,
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REMARK 1. From (2.9) and (2.10),

(2.14) Gi (&,7m) Z [(l+77 _1 )TJ cos 2wlé

and

N + _ - 1 1 sin 27
(2.15) H; (&n)—ZLHn)rﬂl—n)"} i

Then, based on the analysis of [2], [3], [6], we have the following results:
for any r > 0,

216)  L+yGHEM 20, 0.1, o)
with equality if and only if (¢,7) = (1/2,1/2);

217)  1+5Gr(En 20, £e0.1], yelo.l]
with equality if and only if (£,7) = (0,1/2) or (1,1/2), and

1
(218) H;L(@T?) <0, ¢¢ [0’ 5]5 ne [0* 5]3
(219 HI(6m) >0, €€[0,3], nelo.)

In (2.16), £ € (0,1) can be replaced with £ € [0.1] if » > 1, because
G is uniformly bounded in ¢ for r > 1.

LEMMA 2.1. P, : T, — T), is invertible,

(1) unless £ = 1/2 with J == 1 in equation (1.8) when r is even,
(2) unless £ =0 or 1 with J =1 in equation (1.8) when r is odd,

where { and J are parameters used for (-,-)y,.

Proof. By simple calculation, we have

Pr(¢x) = Z (@r, V1)ndt = (Pk, Vi) bk

kEA,
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because
0 k#i
() =14 1 B k=i=0
ijj[1+Ar(§j,lh)] k=i€eA;.
Now we need to show

> w4+ AdE; TR)] #0

Clearly,
(2.20) 1+ A(En) =1+ 0"GF(Em)] —in” HF(En).
From Remark 1, we have Re[l + A.(€,1)] > 0 unless £ = 1/2if r is

even, and Re[l + A,(£,7)] > 0 unless £ = 0 or 1 when r is odd.
LEMMA 2.2.
(thvv) = (f?v:’hv vE SI:
Proof. For any [ € Ay,

(Pafovd) = ( ) (frr)ndr. v1)

k€A,

= Y (fve)n(dr 1)

kEAL
= (f,¥0n
because (¢x,¥;) = bprif k, [ € Ap.
COROLLARY 2.3. If
(fiv)n =(g,v)n, v €Sy,
then
Ppf = Py
Proof. By Lemma 2.2, (P, f,v) = (Ppg,v) for v € 5}. Then (Pyf —
Prg,v) = 0. Write
Ppf — Prg = Z CkPk-

kEA
Because (¢x,¥1) = bki, (Pnf — Prg,¥x) = ck = 0 for k € Ap. The

corollary follows.
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THEOREM 2.4. For f € H® with s > 1/2, we have an error estimate

If = Puflle < CRTH £l
f0<t<s<t+r.

Proof. Let Pyf = ZkeA ardr with ax = (f,¢¥x)n. Then
f(0)+ Dzl widin (€ RN, k=0
(2.21) v =13 f(b)1 + X, w; A, (&, k)]

+ g0 |55 widin (€)1 + Bl BB flk+IN), k€ Af.

Therefore,
lao — FO)12 < €Y IF(IN)))?
I#0
1 ol
=C 12y | | 2VIONF
#0 1£0
< CRE Y (INPIfUN)P, s> 1/2
1#0

Because m < C|kh|™ by (2.11), we have
B[k — F(R)I* < ClkRI* K| |k f ()P + T,
< CREC=O A=k f(R) 4 T
< CREIR2f(R)P + T, r+t—s2>0,
where

T < CI[*(Y_ IfUN + k)

150

Ikl 28| y|12
<C E E IN + k)**|f(IN + k
1#0 1#0

8— (kh 28 2
= cp2-0 Y D T AT > N + k| f(IN + k)]
#0 1#0

< CR?=O N N + k|| fUN + K,
1#0
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where t > 0, s > 1/2, |kh| < 1/2. Then

> Kok — f(B)* < CROTIN AL+ CH¥|FI2, % = max{L. |k]}.
kEA,

Now the theorem is immediate. 0

A last comment about Py is that PPy # Py, so Py is not a projec-
tion.

3. Abstract Numerical Analysis

Consider an integral equation,
{3.1) Au+ Bu = f

where A1 H* — H**" is an invertible pseudodifferential operator of or-
der —v, and B is a pseudodifferential operator of order —oc. Then B is
a compact operator from H* to H**¥ by Sobolev embedding theorem.
Assume (3.1) is uniquely solvable for arbitrary f. Then the system
(3.1) is stable because of the Fredholm alternative theorem. We will
investigate the unique solvability and convergence of the solution of
the following approximation equation.

(3.2) PrApup + PpByup = Py f

with up € Ty. Here A; and Bj are approximation operators defined
by using certain quadrature rules.

Assuming Py A, : Ty — T} is invertible, we can introduce a solution
operator Ry : H®* — T}, such that

(3.3) PrApRyu = Py Au.

The operator R is a solution operator that is obtained from equation
(3.2) with B = 0. With aid of the operator R}, we can write equations
(3.1) and (3.2) in standard second kind integral equation forms. Then
we have

{3.4) u+ Mu =g,
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and
(3.5) up + RpMpup = Rayg,

where M = A71B, M}, := A7'B), and g = A~!f. Note that M is
also a pseudodifferential operator of order —oc.

Now for the stability and error analysis of equation (3.2), we anal-
yse equation (3.5) instead. For the analysis of (3.5), we need some
additional assumptions.

(A1) ||[Rpu—ulle < Ch* Ylu||s foru € H®, where —v <t <s <t+4p

and s > 1/2 — v,

(A2) |[((Mp—M)u||y < Ch*||u||s where u € Th, A > pand t, s € R.
In (A1) the condition ¢ > —v, as will be seen in the later sections, is a
characteristic of our method. Moreover, s > 1/2~—v is needed since Au
is continuous when u € H*®; then Rju is well-defined. The assumption
(A2) is satisfied if B is an integral operator with smooth kernel ( see
Corollary 3.3).

THEOREM 3.1. Then equation (3.5) is umquely solvable, and we
have an error estimate,

lu = unle < CR*Mulls,
where —v <t <s<t+p.
Proof. First, we prove the stability of (3.5):

(3.6) I+ RaMu)iell, 2 Clllle, v € Th

for an arbitrary ¢t € R and a constant C' only dependent on t if A 1s
small enough.

Since the operator (I + M) is stable in an arbitrary Sobolev space,
we have

(3.7) I+ M) = Cllgle, o ¢ B!
for t € R. The stability estimate (3.6) is proved if we show

(M = RaMa)b]l, < CR [l o € T
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for some r > 0.

(M = ReMa)oll, < (I = Ri)M || + [[Ra(M = My, .
Using (A1) and (A2),

(I = Rp)Mpll, < [T = Ri) MY anpe —y
< Chp”Mw”max{t,—u}-rp
< CRP ([l

because M : H* — H? is bounded for arbitrary A, t € IR. We also
have

(3.8) | Ra(M — Mp)vl|,
< UM = Mp)pll, + CRP (M = M) l|gan e —u) 4
< CR"||%)4

where r > p. Now the stability is proved.
For error analysis, substitute g in (3.5) by using (3.4). Then we have

up + RpMpup = Rpu + Ry Mu.
Rewrite the above equation as follows:
(I + RuMup)(un — Pnvu) = (Rpu — Pnu) + (ReMu — Ry My Pru)
where Py is the orthogonal projection in L,. The stability result yields
l(un = Pru)lle = C(I1Rhu — Pyulle + [|RaMu — Rp My Pyulli)

for ¢ € IR. Since (A2) and the approximation property of the orthogo-
nal projection yield

|Mu — MpPru||x < [[M(u— Pyu)l[a+ (M — My)Pyul|
< |lu = Pyul|a—p + ChP|| Pnuf|x
< ChP|Jul|a,
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we have, using (A1),

[[Rr(Mu — My Pyu)||:
< HMu - MhPNu”t + ChPHMU - MhPNu”max{t,—V}+p
< ChP|lul|x

for arbitrary A € IR. Now, using (Al) for —v <t < s < t+ p and
s> —v+1/2,
[ Bru — Pyulle < [[Rpu — ulle + ju — Pyull;
< CR 7 lulls + CR " lulfs.

Then
lun = Preulle < CR*7lulls.
The theorem is obtained by applying the triangle inequality. O

Now we give some convergence result for an arbitrary order pseu-
dodifferential operator. This kind of result is also found in (5], and we
supply a proof since it has a little bit different flavor.

LEMMA 3.2. Assume K is a pseudodifferential (integral) operator
of order —k, i, [Kllp+r < Cpllplly, for arbitrary p and y € H?.
Then, for v € Ty,

(3.9) 1Ky — Kntollq

A

CCR* Y]y jogas @ >0

provided k — g > 1, where

K@) :

1
: / K(t,s)(s)ds,
0

and its approximation operator,

N-—-1

Ka(9)(#) :=h Y K(t, Ah)p(\h).

A=0
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Proof. Let
1
K(om)(t) = / K(t,s)y¥(s)ds
0
= Y amuidilt),
lez
and
N-1
1(m ) ‘:hZAtAhqsm AR)

A
= Z b adi(t)
1€z
Note that from our assumption

D lam PP < Cjmi*, peR.
i€z

Introducirig an adjoint integral operator K* of K such that

1
K*(¢m)(s) = /(; K(t,s)pm(t)dt

= Z (‘m,lq&l(‘s)v

€z

we can express ap,; and b, ; in terms of ¢, ;. First,

Am k = /0 /0 K(t,8)pm(s)p_k(t)dsdt

_ /01 UO K(t,s)¢_ k(t)a‘t] S (s 1ds

1
= / [Z C—k,1¢t} Smds = C—k,—m
0

ez
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By the same way,
1 N
by k= / [hZKt (t, AR)dm( AR } é_x(t)dt
0
{ K t, ARG (t)dt]
;
S
A=1 IEZ
=Y ek [hZ%(Ah)@ Ah)}

c k191 Xh)]

ez A=1
= E Cok,—m+4jN-
JEL

Notice that

Yo leatmmas NPT =Y JamenaP%9 < €2yl ~ N |20,
lE€EZ I€Z
Then for m € Ay,

K (ém) — Kn(ém)lI2

2
= Y ami— b PP =Y lz m.—mﬂ-N} 1|22

ez ez |;€ez*

IN

Z [Z |C—I,—m+jNI2|"m+]‘N|2r} , {Z l-m-{»—j]\/'[-—?r} |”29
1€z {jee* JEL*
Z |C—I.—m+jN|2|I|2q]}

<UD I=m4 N2 Y [ —m NPT
jEL* €L =

< [Z |_m+j,~;—2~"} : {Z l-m+jN|‘”"*“”)J
jen” J EL™

< CRYF=9) 15 1/2 g—k+r < —1/2.
Note in the above proof, r is an intermediate number, and r such that
r>1/2, ¢—k+r < —1/2, exists only when k — ¢ > 1. Suppose

meA,
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Then
K% — Kl
< Y [ Kb — Kndmlly
meEA,
< \/Z ()|l +2a \/Z |Kbm — K6 2lm|=1-20, a >0
meA; meA,

< Cl¥lly2+a max IKdm — Kndmllq
< CR* |1 /240

U
From Lemma 3.2 and the inverse estimate on T}, we have the fol-
lowing consequence.

COROLLARY 3.3. Assume K is an integral operator with an smooth
kernel. For ¢ € Ty,

(3.10) 1Kv — Knplle < CRA[

where s, t € IR, A > 0.

4. First Kind Integral Equations on Smooth Curves

In this section, we analyse the numerical method (1.13):
(4.1) Phﬁ;:uh = Phﬁu,

which is obtained by using the qualocation operator P, and by substi-
tuting f with Lu. Rewrite (4.1) as

(4.2) Pu(A; + Bp)up = Py(A + B

Remember that

(4.3) Au(z) = —2/1 log |2e ™2 sinw(z — y)|u(y)dy,
0
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and

(&) = 1y,
2¢~1/2sinn(z — y) u(y)dy.

(4.4) Bu(z) = —2/(; log

The operator A is an isometry operator from H*® to H**! for any s € R
such that

(4.5) Au(z) = Z %ﬂ(m)cﬁk(x), m = max{1, |m|},

meEZ

where

u(z)= ¥ Um)gm(z).

meZ

The operator B has a smooth kernel if 4 is a smooth parametrization.
In view of (1.7) and (1.12),

N-1
(4.6) Apu(z) = —2h Z log |2e~ /2 sinmw(z — mh)|ju(mh), < # mh,
m=0

N-1
(4.7) Ajru(z) = — 2h Z log |2¢ /2 sin w(z — mh)|(u(mh) — u(z)) + u(z)
) m=0

= (Apu)(z) + u(z)[1 — Ax(1)],

and

N-1

(48)  Bus(z) = -2k ¥ log | ) = L(mh)

2e~/2sinw(z — mh’

) o(mh).
Taken from analysis in [6],
1
(4.9) Ande(z) = D —om(z),
m=k

where the notation m = k represents m = k (mod N). Define

(4.10) G(z) =" 117I¢1(x), A

lez~
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and
il
4.11 r = )
( ) (xyn) lz:. |l+ n|¢l(x)s T € Z
€Z
Then
1+ AG(Nz), k=0,

(4.12) Andi(z) = { o)1 + T(Na, kh)|, k€ A3,

and

1’ k — 0
(4.13) Andr(z) = { ]%quk(x)[l +T*(Nz,kh)], k€ A3,

where
(4.14) I*(z,n) = [(z,n) — In|G(z).

By simple calculation,

'(z,n) = i { g -l-—l— — %l—;ll-] cos 27l

(4.15) = !
Z[ !’7[ ]sinZﬂ'laﬁ.

By substituting f with A} ¢, in (2.21), and followed by simple calcu-
lation,

—

(4.16) Pp A di(z) = agor(z),

where

417) ap={ " o
(1T 0= L, gl + D6 I + D6 FRT], k€ AL
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By the same way, we have

(4.18) PuAdi(z) = Broi(z).

where

(4.19) PR k=0,
| AT, el BTG R, ke sy

Let us define

(4.20) E*(n) == |k|(a} — Br)
= Z T*(&,m[L + A&, 7).

E*(n) is an important quantity in determining the order of convergence
for our method, and it is shown in the next theorem.

Consider a solution operator Ry := (PpA})"'PrA. Ry is well-
defined if P Aj is invertible (see Lemma 4.2).

LEMMA 4.1. Assume PoA; : Tn — T} is invertible. Suppose
|E*(n)} < C|n|P. For f € H?® with s > —1/2, we have
IRaf = Flle < CRETY) £,

where —1 <t <s<t+p
Proof. See the proof of Theorem 6.1 in [6].
Now we examine the invertibility of P, A} : T — T).

LEMMA 4.2. Use splines of even order as test functions. PpA} :
Ty — Ty is invertible unless the quadrature method J = 1 with ¢ = 1/2
(in (1.8)) is used.

Proof. In view of equation (4.16), we need to show a} # 0. We
prove that

Re |[1+T* (€)1 + A& )| >0,



948 Youngmok Jeon and Ha-Jine Kimn

if [n| < 3 and |£] < 1. Using the notations defined in Remark 1,

1+ T*(&n) = Re[L +T*(&,m)] +ilnlH (£,n),
and
1+ A& n) =1+0"GHEn) —in"HI(E,n).
Then
Re [0+ (&Il + A& 7)]] =Rel1 + T*(€,m)] - [1+07GF(€.1)
Using (2.18) with H}(¢,n) = —HF(1 - £,7n), we have
InlHY (&) - n"HF (€,1) 20, 0< €< 1L

Now
Re[l + T*(&,n)] >1—é‘ éi“(’iT;(Hn)
>1‘%_égl(lil)
>1“é_11€>0'

Since [14+7"G}(€,1)] > 0 unless £ = 1/2 by (2.16), we have the lemma.

Like the method of Sloan and Burn [6], the stability of this method
1s not known for splines of odd order either.

LEMMA 4.3. Use splines of even order r > 2 as test functions.
(1) |E*(n)| < Cln|? at least,
) |E*(n)| < Cin|? if the quadrature method J == 1 with £ = 0 or
1 is used for the discrete inner product (1, 8).
(3) |E*(n)| < C|n|® if the two-point symmetric quadrature, J=2
with & = € and &, = 1 —&, is used where £ = .2308296503 and

1 — ¢ are zeros of

= 1
Z 73 cos (2rlx).
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Proof.
J
E*(n) =Y T*(&,n) + T*(&,niA (&, 7)
i=1

where »
Arl&m) =n'[GF (&) — iH(€,7)]
with G} and H} in Remark 1, and

7] lnl 2y
t‘ [l 7 + —n ; cos(2wlz)

Il 7. \
+1 Z[Z —n sin(27lz).

Simple calculation yields

'(z,n) =

I*(z,n) = 2> G*(z) + 2ln"H*(z) + 2n"T*, (, ) + i2p[n|T*3(z, 1)

where
=1 =1 ‘
G*(z) = Z 7 cos(2nlz), = Z B cos(2mlz),
=1 {=1

—F_;l(l', T[) == Z mz_—nz—) COS! 27('[13),
=1

1
I2—n

]2

ﬁ?‘(‘Ta 77) ==

5 sin(2nlz).
=1

Then E*(n) = Cnln|+O(n)" in general. When ¢ =0, 1/2 or 1 with
J =1, sin(27€) = 0. Then

E*(n) = Cly)* + O(n®).
When the quadrature is symmetric with J = 2, (that is, £ = 1-¢;),

we have

J
n) =D wiRe[T (&, m)-[1+0"GF (&, m)l+In | H (&5, m)n" H (€5,m).

=1



950 Youngmok Jeon and Ha-Jine Kimn

Simple calculation gives us

> T . R
H (&) = =20y 7y sin(2nle) + O(°)
=1

for any r. If G*(&;) = G*(&;) = 0, then

Re[T* (&, m)} - [L+0"Gigjm)] = Cn® + O(n")

and

mlH (&5on) - n"H (&) = Cinln™ "+ O(n°*7).
Since r > 2, and the lemma is immediate.

By Lemmas 4.1, 4.2 and 4.3 and smoothness of the kenel of the
operator B, our method satisfies the assumptions (Al), (A2) with v =
—1 with p = 2, 3 or p = 5. Therefore, we have the following theorem
immediately by applying Theorem 3.1.

THEOREM 4.4. Let up € T) be a solution of (1.13) with f €
H**t' s > ~1/2, and assume —1 < t < s < t + p where |[E*(n)| <
C|n|?. Then (1.13) is uniquely solvable, and we have error estimate

(4.21) lu — uplle < Ch*Yu|,

where u € H?® is a solution of (1.2).

5. Numerical Examples

Let u be a solution of (1.2) and uy be a solution of (1.13). By
the nature of our method, the solution we get will be {u(kh)} 1, By
considering u and uy, as distributions; we can consider |(u,g) — (un, g)|
for a smooth function g, where (-, ) is considered as a duality paring.
Since

(0.9) — ()] < Cllu — wnllllgli o t € R

therefore we can see the convergence of ||u — upll¢ through |(u,g) —
(un,g)l-
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Let

1
(5.1) fp(u) = —2/(; log [P — y(z)|u(z)dz, P € Q,

where 2 is a simply connected region and its boundary I is parametrized
by v(z). Introduce

1
(5.2) fe(up) = ——Zh/ log |P — v(z)|up(z)dz
0
and
N=-1
Foa(un)= =2 log|P —y(kh)|un(kh).
k=0

Then fp(un), fpn(ur) approximate fp(u) at P € Q. Now

|fp(u) = fen(un)l < |fp(w) = fp(un)| + [Fr(un) — Fpa(un)l.

Because gp(z) := log |P — 4(z)| is smooth for P not on the boundary.
we have

|[fe(u) = fe(un)l < llgplhillu — ual -1

Because fp is a pseudodifferential operator of order —oo, Corollary 3.3
gives us

\fe(un) — fpa(un)] < Cph*|unl,
with arbitrary A\, s € IR. Then

(5.3) \fp(u) = fra(un)] < Cpllu — w1
Consider harmonic functions:

Fle.y) = Rel{(z +1) + iy},
where ¢ = .5, 1.5, 3.5 on the ellipse:

[ := {(cos(t),2sin(t)) : 0 < ¢ < 27},
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p(u) = fen(un)] | 7o || 1fp(w) = fen(un)| | ra
1/16 .235e-1 .901e-3
1/32 812e-2 1.53 577e-3 .642
1/64 .287e-2 1.50 .205e-3 1.50
1/128 .102e-2 1.50 .724e-4 1.50
1/256 .35%¢-3 1.50 .256e-4 1.50

Table 1 : Numerical results for the one point method of order 3

(0,.4), f(z.y) = Rel(z +iy)*].

and two point method of order 5; P :=

| Ifp(u) = feplup) | o || [fP(W) — fRa(un)l | Ta
1/16 .236e-2 .246e-2
1/32 721e-4 5.03 .95%e-5 8.00
1/64 274e-4 1.39 .248e-5 1.95
1/128 .695e-5 1.98 4226 6 2.55
1/256 .150e-5 2.22 .742e-7 2.51

Table 2 : Numerical results for the one point method of order 3
and two point method of order 5; P = (0,.4), f(z.y) = Re[(z + 1y)'"]

b | fp(uw) = fenun)| | o || [fP(w) = fra(un)l | s
1/16 .192e-1 A476e-1
1/32 .920e-2 5.79 .103e-3 8.86
1/64 117e-2 1.06 .785e-5 3.71
1/128 .146e-3 2.98 .244e-6 5.01
1/256 .182e-4 3.00 759e-8 5.01

Table 3 : Numerical results for the one point method of order 3
and two point method of order 5; P = (0,.4), f(z,y) = Re[(z + 1y)* 5]
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Using the single layer potential representation, we have the bound-
ary integral equation (1.1), where the single layer density u is sought.
Then the single layer density function will have regularity: u € H9~1/2—¢
for ¢ > 0. Equation (1.1) is solved by the qualocation method (1.13)
for up. Then we expect the convergence of order min{p, ¢ + 1/2 — €}
in the norm || - ||_;. The tables represent the numerical results with
the method of the order 3 and those of the order 5, respectively. As
expected, the convergence of order 5 method is not better than that
of order 3 method asymptotically when u has low regularity. When u
is sufficiently smooth, the maximal orders of convergence are achieved.
In our numerical experiments the maximal convergence occurs for less
regular u than that expected by Formula (5.3) with Theorem 4.4. This
is because of common error cancellation phenomena that happen when
we evaluate approximate potential (5.2).

In the table, the rate of convergence rj is evaluated by the formula:

. log [|fp(u) = fpujaluns2)l/1fp() — Fou(up)l] |

log 2
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