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ON THE SPECTRAL MAXIMAL SPACES
OF A MULTIPLICATION OPERATOR

JAE CHUL RHO AND JONG-KWANG YOO

1. Introduction

In [13], Pték and Vrbova proved that if T is a bounded normal op-
erator T on a complex Hilbert space H, then the ranges of the spectral
projections can be represented in the form

E(F)H = ((T - M)H for all closed subsets F of C,
AEF

where £ denotes the spectral measure associated with T. The alge-
braic representation of the spaces £(F)H turned out to be useful for
the automatic continuity of linear transformations intertwining a given
pair of certain decomposable operators. For applications in automatic
continuity theory, we refer to (3], [8],[11],[12],[18].

In the present paper, we show that a theorem describing structure
of certain class of invariant subspaces of multiplication operators, so
called spectral maximal spaces(terms to be defined below). And we
attempt to give a simple and unified approach to the algebraic repre-
sentation of the spectral maximal spaces which is an analogy of the
normal operators, i.e., if 4 is a semi-simple commutative Banach alge-
bra and T, has the weak-2 spectral decomposition property then there
exists an idempotent element r € A such that

T.(A) = ﬂ (T, — M)A for all closed subsets F' of C,
AgF
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where Tyrx := ra for all x € A.

We first recall some definitions and known results concerning local
spectral theory included in [5]. Given a complex Banach space X,
L(X) denotes the Banach algebra of all bounded linear operators on
X. Given an operator T' € L£(X), let Lat(T) stands for the collection
of all closed linear subspaces of X which are invariant under 7. Reeall
that the notion of local spectrum from [5]; if 2 € X then the local
spectrumn op(r) of T at 2 is defined to be the complement of the set
of all A € C for which there is analytic f : U -+ X on some open
neighborhood U of A such that (T — pI)f(p) = z for all 4 € U. A
spectral mazimal space of T is an invariant subspace Y of T, which
contains any invariant subspace Z with the property o(T|Z) C o(T|Y).
An operator T € L£(X) is called decomposable (resp, weak-2 spectral
decomposition property) if for every open cover {U, V'} of C, there exists
Y.Z € Lat(T) such that X =Y + Z (resp, X =Y +2Z ), o(T|Y) C
Uand o(T|Z)C V.

It follows from the example given by E. Albrecht [2] that in gen-
eral, weak-2 spectral decomposition property is strictly weaker than
decomposability. An important feature in this theory of the decom-
posable operator is the investigation of the spectral maximal spaces
given by X¢(F) = {x € X : op(r) C F} for all closed subset F of
C. I T € £(X) has the single-valued extension property, then for each
closed F C C, X¢(F) is a linear subspace (not necessarily closed) of X,
hyperinvariant for T. Let T he a linear operator on a complex Banach
space X. We say that a subspace Y of X is T-divisthle if (T~ A)Y = Y
for cach A € C.

Cousider the class of all linear subspaces Y in X which satisfy (T —
ALY =Y forall A € C\ F and set Ep(F) := spant. It is obvious that
(T—AET(F) = Ep(F)for A € C' F as well so that the class which we
consider has a maximal element if ordered by inclusion. In particular,
Er{#) is the largest T—divisible subspace for tle operator 7. The
study connections between the Ep(-) and Xp(-) sulspaces derives from
automatic continuity theory. The maximal algebrai: spectral subspaces
Ep(+) are defined in algebraic terms and the local analytic spectral
subspaces Xop(-) are analytically defined. Their structure is much more
readily accessible to analysis, see [5], [10],[11], [12, [14], [15], [18] for
details.
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In [8], B. Johnson and Sinclair were the first to investigate the re-
lationship between automatic continuity question and the existence of
divisible subspaces, i.e., for T € £(X) and S € L(Y), if T is not al-
gebraic and S has a non-trivial S-divisible subspace, then there is a
discontinuous linear operators A4 : X — Y satisfying AT = SA.

In order to have more information about the splitting spaces Rho
and Yoo [16] have introduced the following concept of decomposability.
An operator T' € L£(X) is called (E)-super-decomposable if for every
open cover {U,V} of C, there exists an R € £(X) commuting with T
such that R? = R,o(T|R(X)) C U and o(T|(I-R)(X)) C V. The class
of (E)-super-decomposable operators contains all spectral operators,
all normal operators on Hilbert spaces, all operators with a totally
disconnected spectrum. For various examples and characterizations of
(E)-super-decomposable operators, see [16].

2. Maximal spectral spaces of a multiplication operators

Given a commutative complex Banach algebra A, let A(A) stands
for the character space of A, i.e., the set of all non-trivial multiplicative
linear functionals on A. For each a € A, let @ : A(A) — C denote
the corresponding Gelfand transform given by a(¢) := ¢(a) for all
¢ € A(A). A commutative Banach algebra A is said to be regular if
for every closed subset K C A(A) and any ¢¢ ¢ K, there exists ¢ € A
such that Z(¢o) # 0 and Z(¢) = 0 for all ¢ € K. Recall that if A is
semi-simple then a — @ is injective, equivalently, the radical rad(A) of
A is {0}. On A(A) we shall have to consider the hull-kernel topology,
which is determined by the Kuratouski closure operation

c(B)={¢ € A(A): ¢(u) =0V u € A with ¢(u) = 0 for each ¢y € B}

for B C A(A). In fact, cl(B) = hul(Ker(B)). The hull-kernel topology
is coarser than the Gelfand topology on A(A) and they coincide if and
only if the algebra A is regular, see [4]. For a € A the multiplication
operator T, € L(A) is defined by T,z = az for all z € A.

THEOREM 1. Let T € L(X) be (E)-super-decomposable. If T has
no non-trivial divisible subspaces, then for each closed F C C there
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exists an idempotent operator R € £(X) such that the ranges of the

R coincides with X¢(F) = Ep(F).

Proof. Let U be an open neighborhood of F. Then there exists an
idempotent R € £(X) such that TR = RT, o(T|R(X)) C U and
o(T|(I — R)(X)) C C\ F. Since TR = RT, we have (T — A\)RE(F) =
REr(F) for all A € C\ F, which implies RE7(F) C Ep(F) by maxi-
mality. A similar argument ensures that (I — R)E7(F) C Ep(F). We
infer from o(T|(I - R)(X)) C C\ F that (- R)E7{F) C (I-R)(X) C
Er(C\ F). And so (I — R)Ep(F) C Ep(F)N Ep(C\ F) = {0}, since
T has no non-trivial divisible subspaces. Hence Ep(F) = REp(F) C
R(X). On the other hand, it follows from o(T|R(X 1) C U that R(X) C
Xr(U)YN Er(U). Hence we have

R(X)C [ (Xp(U)NEr(U))
FCU

= Xp(F)[ ) E+(F) C X1(F) € Er(F) C R(X),

because Xp(F) = ({Xr(G) : G open, F C C}. Hence R(X) =
Er(F) = Xp(F), which completes the proof.

We denote by C>(C) the Frécht algebra of all infinitely differ-
entiable complex valued functions defined on the complex plane C
with the topology of uniform convergence of every derivative on each
compact subset of C. An operator T € L£(X) is called a generalized
scelar operator if there exists a continuous algebra homomorphism
®: C(C) — L(X) satisfying ®(1) = I and ®(z) = T, where I is the
identity operator on X and z is the identity functicn on C. For a given
generalized scalar operator T € £(X) and a closed subset F of C, P.
Vrbova proved [19] that the existence of a natural number n € N such
that Xp(F) = ﬂ (T — X\)"X. From this equality, we have

AGF

EfF)C [ (T-3)"XC (VT -XN"X = Xp(F).
A¢F, meN AEF

Hence Xy (F) = Ep(F) for a closed F C C, and so every general-
ized scalar operators do not have non-trivial divisible subspaces, since



On the spectral maximal spaces of a multiplication operator 209

Er(¢) = Xr(¢) = {0}. On the other hand, the Volterra operator T

defined on C([0, 1]), the set of all continuous functions with the supre-
t

mum norm, given by (Tz)(t) :=/ z(t)dt for all z € C([0,1]), and
0

t € [0,1]. Then {f € C>=([0,1)) : f(™(0) = 0 for all n € N} is a

non-trivial T-divisible subspace and T is quasi-nilpotent.

COROLLARY 2. Let T € L(H) be a normal operator in Hilbert space
H and let £(-) be its spectral measure. Then for each closed F C C,
there exists an idempotent operator R € L(H) such that

R(H)=Hr(F) = Ep(F)=£(F)H = (| (T - M)H.
A¢F

Proof. If Z C H is a T-divisible subspace then by Lemma 5.1 of
[18],

ZC(WT-ADzZC ((T-M)HC [ (T-ADH = {0},
reC AeC AEG(T)

which implies E7(¢) = {0}. By Theorem 1, there exists an idempotent
operator R € L(H) such that R(H) = Hp(F) = Er(F), since every
normal operator is (E)-super-decomposable operator. By Theorem of
[13] and Theorem 5.2 of [18], we have

Hy(F)=&(F)H = (T - MH.
A¢F

This completes the proof.
Now we can prove the main result of this paper.

THEOREM 3. Let A be a semi-simple commutative complex Banach
algebra with or without identity, and let a € A such that the multiplica-
tion operator T, on A has the weak 2-spectral decomposition property.
Then for any closed subset F' of C, there exists an idempotent element
r € A such that

T(A) = [)(T. - M)A,
AF
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Moreover, Ty (A) = A7 (F) = Ep.(F)={zx € A: cuppr Ca ' (F)} is
an ideal of A, where supp T may be taken as the hull-kernel closure of

the set {¢ € A(A) : T(¢) # 0} in AN(A).

Proof. Assume that T, has the weak 2-spectral decomposition prop-
erty. At first, we claim that the Gelfand transform @ is hull-kernel
continuous on A(A). Suppose that @ is not continuous for the hull-
kernel topology of A(A). Then there exists closed W C C such that
a "(W)isnot a hull in A(A). Let ¢ € h(k(a""(W)))\a (W) and let
A= ¢(a) € a1 (W). Since T, has the weak 2-spectral decomposition
property, there exists Y, Z € Lat(T,) such that

=Y + Z,0(T,|)Y)CC\{X} and o(T,|Z CC\a '(W).

For cach y € Y there exists u € Y such that y = (T, — A)u. Thus
#y) = (¢(a) — N¢(u) = 0 and hence ¢ = 0 on Y. Let ¢ € a~1 (W)
and p = "'((1) € W. For each z £ Z there exists v € Z such that
(To — p)v = z. Thus ¥(z) = (Y(e¢) — p)(v) = (0 and so 3» = 0 on
Z. It follows frmn ¢ € h(k(a='(W))) that ¢ = 0 on Z. Thu.s ¢ =0
on A=Y + Z. Since ¢ € A(A), this contradicts onr assmnpti()n that
a is hull-kernel continuous on A(A).  Let 47 := A ¢ C denote the
unitization of a given commutative complex Banacl algebra A without
identity. It is (l( ar that A, is semi-simple and @ is also continuous
on A(A A) b}, where each ¢ € A(A) is identified with
its ((m(nu(al ext(,n.smu to A, and d..{a + A1) = \for all « € A and
A e €. Without loss of generality, we may assume that A 1s semi-
simple, commutative Banach algebra with identity. Given an arbitrary
open cover {U, Uy} of C, choose a pair of open sets Wy, W, C C such
that
C\UyCW, CW, CW, CW, C T

Then both @~ '(W)) and a~'(C\ W,) are compact with respect to the
hull-kernel topology of A(A). By Corollary 3. 6. 10 of [17], there exists
r € A such that

=0 on a (W) and 7=1 on a "{C\ W)

Since 12 = 7, we obtain r? = r, by the semi-siinplity of 4.  Let

T, € L(A) be given by Tpr := re for all x € A, It is easily checked
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that T,T, = T, T, and T? = T,. Let A € C\ U;. Then clearly
(@ = A1)@)| >0 forall ¢ea l(C\W).

Apply Theorem 3. 6. 15 of [17] to obtain ¢ € A such that (@ — Al)er =
7 on A(A), which implies (¢ — AM)er = r, ie., (T, — AI)ST, = T,
where Sz := cx for all z € A. Hence (T, — AI)|T(A) is invertible
and so o(T,|T,(A)) C U;. Proceeding in the same way, we obtain
o(T.|(I — T,)(A)) C U,, and hence T, is (E)-super-decoposable. If
Y C A is T,-divisible subspace, then we have

Y= ((T. ~ADY C ((Ta = AD)A C rad (A),
AeC AeC

where rad (A) denotes the radical of A. The semi-simplicity of 4 im-
plies that

Y = (|(T. - ADA = {0},
AeC
and so E7(¢) = {0}. Hence by Theorem 1, T,(A) = Er,(F) = Ar,(F).
Since the spectral maximal space Ar, (F) = T,(A) is hyperinvariant,
A1, (F)is an ideal of A. On the other hand, it follows from Theorem
6. 2. 5 of [5] that

Ar,(F)={z € A:suppz Ca '(F)}.
Finally, we claim that

Ar,(F) = [)(T. — ADA.
A¢F

The inclusion Ar, (F) C n (To — AI)A is clear from the elemen-
AEC\F

tary fact that (T, — M) Ar,(F) = A, (F) for all A ¢ F. To prove the

reverse inclusion, take any open neighborhood V of F. Then {V,C\

F} is an open covering of the complex plane C. As T, is (E)-super-

decomposable, there exists an idempotent R € £(X) commuting with

T, such that

o(To|R(A)) €V and o(T.|(I - R)(4)) CC\F.
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Let
Z:= [T, ~ AD)A.
AgF
It 1s casily checked that -

(I-RXZ)C ((Ta — ADA C rad(A),
AeC
which implies that Z C R(A) C Ar, (V). Since X7(-) is known to

preserve intersection, Z C ﬂ A1, (V)= Ar,(F). Hence we have
FCV

Ar(F)= (J(T. - ADA.
AgF

This completes the proof.

Note that the preceding proof shows that actually T, is (E)-super-
decompsable if and only if T, is super-decompsable if and only if T, is
decompsable if and only if T, has the weak 2-spectral decomposition
property if and only if the Gelfand transform @ is hull-kernel continuous

on A(A).

THEOREM 4. Let A be a commutative complex Banach algebra with
or without identity, and let a € A such that the Gelfand transform @
is hull-kernel continuous on A(A). Then for any closed F C C, there
exists an idempotent element [r] € B := A/rad (A), the coset of r € A,
such that

Ti)(B) = Byy(F) = Eq,,(F) = () (T} — A)B
AEF

o~ ~—1

={[r]€ B : supp[z] Cla] (F)},

where rad (A) denotes the radical of A.

Proof. 1t is clear that B := A/rad(A) is a semi-simple commutative
Banach algebra. Let 7 : A — A/rad (A) be the quotient map. Then
by Theorem 23.5 of [4], the map

™ A(Afrad (A)) — A(A)
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defined by 7*(¢) = ¢ o m for ¢ € A(A/rad (A)) is a homeomorphism.

Hence n(a) = [a] is hull-kernel continuous on A(A/rad (A)), since @ is
hull-kernel contiuous on A(A). It is easily seen that

Tio i A/rad(A) — A/rad(A),

given by Tj,)[z] = [az] for all [z] € A/rad(A),is (E)-super-decomposable.
By Theorem 3, one has the results. This completes the proof.

An obvious combination of Theorem 3 and Theorem 2 of [6] leads
to the following results.

COROLLARY 5. Let A be a semi-simple, regular commutative com-
plex Banach algebra with or without identity, and let a € A. Then for
any closed subset F of C, there exists an idempotent element r € A
such that

T.(A) = Ar,(F) = BEr,(F) = (| (T. - ADA.
A¢F

The following Corollary applies, for instance, to any commutative
C*-algebra, since every commutative C*-algebra is semi-simple and
regular Banach algebra. We have the following.

COROLLARY 6. Let A be a commutative C*-algebra, and let a € A.
Then for any closed F C C, there exists an idempotent element r € A
such that

T.(A) = Ar,(F) = Er,(F) = [ | (T - ADA.
AEF

Proof. Every commutative C*-algebra is regular and the hull-kernel
topology coincides with the Gelfand topology on A(A). Thus T, has
the weak 2-spectral decomposition property. By Theorem 3, one has
the results.

THEOREM 7. Let X be a complex Banach space, and let A denote a
semi-simple commutative Banach algebra with identity. Assume that

® : A — L(X) is an algebra homomorphism. If T, € L(A) has
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the weak 2-spectral decomposition property, thern the corresponding
operator T := ®(a) € L(X) 1s (E)-super-decomposable.

Proof. 1t is easily checked that the Gelfand transform a is hull-kernel
continuous on A(A). For every open covering {U, V'} of C, choose a pair
of open sets G, K C Csuch that G CU, K C V and GUK = C. Then
both a~'(C\ G) and @~ !(C\ &) are disjoint, compact with respect to
the Gelfand topology of the compact space A(A4). By Corollary 3. 6.10
of [17], we deduce that there exists b € A such that

b=0 on a- C\G) and b=1 on a HC\K).

Let R := ®&(b) € L(A). Clearly, T commutes with R. From r2 =7 on
A(A), we know that r? = r by semi-simplicity of A and so R? = R.
We claim that o(T|R(X)) C U. Let A € C\ U. Then |[(a — A1)] > 0
holds on the hull @~ !(G). Thus we may apply Theorem 3. 6. 15 of
(17] to obtain d € A such that (a - /\1)d =1on & '(G). Since b =0
on a~'(C\ G), we have (a - /\)bd = b on A(A), which implies that
(a — bd = b. Let §:= ®(d) € £(X). Apply the homomorphism & to
the (*quation (a — A1)bd = b, we have (T — A[)SR = S(T — A[)R = R.
Thus (T — AI)S = S(T — A1) = I on R(X), the range of R. Hence
(T — AI)|R(X) is invertible, i.e., A € p(T|R(X)), and so o(T|R(X)) C
U. A similar argument can be used to show that o(T|(I — R)(X)) C V.
Hence T is (E)-super-decomposable. This completes the proof.

COROLLARY 8. In the situation of Theorem 7, if [1,co(T— M)X =
{0}, then for any closed F C C, there exists an idempotent operator

R € L£L(X) such that

R(X)=Xp(F) = Ex(F)= (|(T - )X,
AEF

Note that for a given commutative, semi-simple and regular Banach
algebra A over C, the left regular representation ® : A — L(A)
given by ®(a) := T, for all a € A. It follows from [16] that T, is (E)-
super-decomposable. Moreover, every multiplication operator T, on A
satisfies

()(T. — M)A C rad(A4),
A€C
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the radical of A, so that ﬂ (Ta — A)A = {0}, since 4 is semi-simple.

It

AeC
follows from Corollary 8 that for each closed F C C there exists an

idempotent operator R € L£(A) such that

1

10.

11.

12

13.

14.

15.

R(A) = A7, (F) = Er,(F) = () (Ta - M)A
AEF
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