ON THE SPECTRAL MAXIMAL SPACES OF A MULTIPLICATION OPERATOR

JAE CHUL RHO AND JONG-KWANG YOO

1. Introduction

In [13], Pták and Vrbová proved that if T is a bounded normal operator T on a complex Hilbert space H, then the ranges of the spectral projections can be represented in the form

$$\mathcal{E}(F)H = \bigcap_{\lambda \notin F} (T - \lambda I)H$$
 for all closed subsets F of \mathbb{C} ,

where \mathcal{E} denotes the spectral measure associated with T. The algebraic representation of the spaces $\mathcal{E}(F)H$ turned out to be useful for the automatic continuity of linear transformations intertwining a given pair of certain decomposable operators. For applications in automatic continuity theory, we refer to [3], [8],[11],[12],[18].

In the present paper, we show that a theorem describing structure of certain class of invariant subspaces of multiplication operators, so called spectral maximal spaces(terms to be defined below). And we attempt to give a simple and unified approach to the algebraic representation of the spectral maximal spaces which is an analogy of the normal operators, i.e., if A is a semi-simple commutative Banach algebra and T_a has the weak-2 spectral decomposition property then there exists an idempotent element $r \in A$ such that

$$T_r(A) = \bigcap_{\lambda \notin F} (T_a - \lambda I)A$$
 for all closed subsets F of \mathbb{C} ,

Received January 9, 1995.

¹⁹⁹¹ AMS Subject Classification: 47A11, 47B40.

Key words and phrases: Decomposable operator, Divisible subspaces, Spectral maximal spaces, Hull-Kernel topology, Gelfand topology.

This work was supported by KOSEF Grant 931-0100-005-1.

where $T_r x := rx$ for all $x \in A$.

We first recall some definitions and known results concerning local spectral theory included in [5]. Given a complex Banach space X, $\mathcal{L}(X)$ denotes the Banach algebra of all bounded linear operators on X. Given an operator $T \in \mathcal{L}(X)$, let Lat(T) stands for the collection of all closed linear subspaces of X which are invariant under T. Recall that the notion of local spectrum from [5]; if $x \in X$ then the local spectrum $\sigma_T(x)$ of T at x is defined to be the complement of the set of all $\lambda \in \mathbb{C}$ for which there is analytic $f: U \to X$ on some open neighborhood U of λ such that $(T - \mu I)f(\mu) = x$ for all $\mu \in U$. A spectral maximal space of T is an invariant subspace Y of T, which contains any invariant subspace Z with the property $\sigma(T|Z) \subseteq \sigma(T|Y)$. An operator $T \in \mathcal{L}(X)$ is called decomposable (resp. weak-2 spectral decomposition property) if for every open cover $\{U, V\}$ of \mathbb{C} , there exists $Y, Z \in Lat(T)$ such that X = Y + Z (resp. $X = \overline{Y} + \overline{Z}$), $\sigma(T|Y) \subseteq U$ and $\sigma(T|Z) \subseteq V$.

It follows from the example given by E. Albrecht [2] that in general, weak-2 spectral decomposition property is strictly weaker than decomposability. An important feature in this theory of the decomposable operator is the investigation of the spectral maximal spaces given by $X_T(F) = \{x \in X : \sigma_T(x) \subseteq F\}$ for all closed subset F of \mathbb{C} . If $T \in \mathcal{L}(X)$ has the single-valued extension property, then for each closed $F \subseteq \mathbb{C}$, $X_T(F)$ is a linear subspace (not necessarily closed) of X, hyperinvariant for T. Let T be a linear operator on a complex Banach space X. We say that a subspace Y of X is T-divisible if $(T - \lambda I)Y = Y$ for each $\lambda \in \mathbb{C}$.

Consider the class of all linear subspaces Y in X which satisfy $(T - \lambda I)Y = Y$ for all $\lambda \in \mathbb{C} \setminus F$ and set $E_T(F) := spanY$. It is obvious that $(T - \lambda I)E_T(F) = E_T(F)$ for $\lambda \in \mathbb{C} \setminus F$ as well so that the class which we consider has a maximal element if ordered by inclusion. In particular, $E_T(\phi)$ is the largest T-divisible subspace for the operator T. The study connections between the $E_T(\cdot)$ and $X_T(\cdot)$ subspaces derives from automatic continuity theory. The maximal algebraic spectral subspaces $E_T(\cdot)$ are defined in algebraic terms and the local analytic spectral subspaces $X_T(\cdot)$ are analytically defined. Their structure is much more readily accessible to analysis, see [5], [10],[11], [12], [14], [15], [18] for details.

In [8], B. Johnson and Sinclair were the first to investigate the relationship between automatic continuity question and the existence of divisible subspaces, i.e., for $T \in \mathcal{L}(X)$ and $S \in \mathcal{L}(Y)$, if T is not algebraic and S has a non-trivial S-divisible subspace, then there is a discontinuous linear operators $A: X \to Y$ satisfying AT = SA.

In order to have more information about the splitting spaces Rho and Yoo [16] have introduced the following concept of decomposability. An operator $T \in \mathcal{L}(X)$ is called (E)-super-decomposable if for every open cover $\{U,V\}$ of \mathbb{C} , there exists an $R \in \mathcal{L}(X)$ commuting with T such that $R^2 = R$, $\sigma(T|R(X)) \subseteq U$ and $\sigma(T|(I-R)(X)) \subseteq V$. The class of (E)-super-decomposable operators contains all spectral operators, all normal operators on Hilbert spaces, all operators with a totally disconnected spectrum. For various examples and characterizations of (E)-super-decomposable operators, see [16].

2. Maximal spectral spaces of a multiplication operators

Given a commutative complex Banach algebra A, let $\Delta(A)$ stands for the character space of A, i.e., the set of all non-trivial multiplicative linear functionals on A. For each $a \in A$, let $\widehat{a} : \Delta(A) \to \mathbb{C}$ denote the corresponding Gelfand transform given by $\widehat{a}(\phi) := \phi(a)$ for all $\phi \in \Delta(A)$. A commutative Banach algebra A is said to be regular if for every closed subset $K \subset \Delta(A)$ and any $\phi_0 \notin K$, there exists $x \in A$ such that $\widehat{x}(\phi_0) \neq 0$ and $\widehat{x}(\phi) = 0$ for all $\phi \in K$. Recall that if A is semi-simple then $a \to \widehat{a}$ is injective, equivalently, the radical rad(A) of A is $\{0\}$. On $\Delta(A)$ we shall have to consider the hull-kernel topology, which is determined by the Kuratouski closure operation

$$cl(B) = \{ \phi \in \triangle(A) : \phi(u) = 0 \ \forall \ u \in A \text{ with } \psi(u) = 0 \text{ for each } \psi \in B \}$$

for $B \subseteq \triangle(A)$. In fact, cl(B) = hul(Ker(B)). The hull-kernel topology is coarser than the Gelfand topology on $\triangle(A)$ and they coincide if and only if the algebra A is regular, see [4]. For $a \in A$ the multiplication operator $T_a \in \mathcal{L}(A)$ is defined by $T_a x = ax$ for all $x \in A$.

THEOREM 1. Let $T \in \mathcal{L}(X)$ be (E)-super-decomposable. If T has no non-trivial divisible subspaces, then for each closed $F \subseteq \mathbb{C}$ there

exists an idempotent operator $R \in \mathcal{L}(X)$ such that the ranges of the R coincides with $X_T(F) = E_T(F)$.

Proof. Let U be an open neighborhood of F. Then there exists an idempotent $R \in \mathcal{L}(X)$ such that TR = RT, $\sigma(T|R(X)) \subseteq U$ and $\sigma(T|(I-R)(X)) \subseteq \mathbb{C} \setminus F$. Since TR = RT, we have $(T-\lambda)RE_T(F) = RE_T(F)$ for all $\lambda \in \mathbb{C} \setminus F$, which implies $RE_T(F) \subseteq E_T(F)$ by maximality. A similar argument ensures that $(I-R)E_T(F) \subseteq E_T(F)$. We infer from $\sigma(T|(I-R)(X)) \subseteq \mathbb{C} \setminus F$ that $(I-R)E_T(F) \subseteq (I-R)(X) \subseteq E_T(\mathbb{C} \setminus F)$. And so $(I-R)E_T(F) \subseteq E_T(F) \cap E_T(\mathbb{C} \setminus F) = \{0\}$, since T has no non-trivial divisible subspaces. Hence $E_T(F) = RE_T(F) \subseteq R(X)$. On the other hand, it follows from $\sigma(T|R(X)) \subseteq U$ that $R(X) \subseteq X_T(U) \cap E_T(U)$. Hence we have

$$R(X) \subseteq \bigcap_{F \subseteq U} (X_T(U) \cap E_T(U))$$
$$= X_T(F) \bigcap E_T(F) \subseteq X_T(F) \subseteq E_T(F) \subseteq R(X),$$

because $X_T(F) = \bigcap \{X_T(G) : G \text{ open, } F \subset G\}$. Hence $R(X) = E_T(F) = X_T(F)$, which completes the proof.

We denote by $\mathbf{C}^{\infty}(\mathbb{C})$ the Frécht algebra of all infinitely differentiable complex valued functions defined on the complex plane \mathbb{C} with the topology of uniform convergence of every derivative on each compact subset of \mathbb{C} . An operator $T \in \mathcal{L}(X)$ is called a *generalized scalar operator* if there exists a continuous algebra homomorphism $\Phi: \mathbf{C}^{\infty}(\mathbb{C}) \to \mathcal{L}(X)$ satisfying $\Phi(1) = I$ and $\Phi(z) = T$, where I is the identity operator on X and z is the identity function on \mathbb{C} . For a given generalized scalar operator $T \in \mathcal{L}(X)$ and a closed subset F of \mathbb{C} , P. Vrbová proved [19] that the existence of a natural number $n \in \mathbb{N}$ such that $X_T(F) = \bigcap_{M \in \mathbb{N}} (T - \lambda)^n X$. From this equality, we have

$$E_T(F) \subseteq \bigcap_{\lambda \notin F, \ m \in \mathbb{N}} (T - \lambda)^m X \subseteq \bigcap_{\lambda \notin F} (T - \lambda)^n X = X_T(F).$$

Hence $X_T(F) = E_T(F)$ for a closed $F \subseteq \mathbb{C}$, and so every generalized scalar operators do not have non-trivial divisible subspaces, since

 $E_T(\phi) = X_T(\phi) = \{0\}$. On the other hand, the Volterra operator T defined on C([0,1]), the set of all continuous functions with the supremum norm, given by $(Tx)(t) := \int_0^t x(t)dt$ for all $x \in C([0,1])$, and $t \in [0,1]$. Then $\{f \in \mathbf{C}^{\infty}([0,1]) : f^{(n)}(0) = 0 \text{ for all } n \in \mathbb{N}\}$ is a non-trivial T-divisible subspace and T is quasi-nilpotent.

COROLLARY 2. Let $T \in \mathcal{L}(H)$ be a normal operator in Hilbert space H and let $\mathcal{E}(\cdot)$ be its spectral measure. Then for each closed $F \subseteq \mathbb{C}$, there exists an idempotent operator $R \in \mathcal{L}(H)$ such that

$$R(H) = H_T(F) = E_T(F) = \mathcal{E}(F)H = \bigcap_{\lambda \notin F} (T - \lambda)H.$$

Proof. If $Z \subseteq H$ is a T-divisible subspace then by Lemma 5.1 of [18],

$$Z\subseteq\bigcap_{\lambda\in\mathbb{C}}(T-\lambda I)Z\subseteq\bigcap_{\lambda\in\mathbb{C}}(T-\lambda I)H\subseteq\bigcap_{\lambda\in\sigma(T)}(T-\lambda I)H=\{0\},$$

which implies $E_T(\phi) = \{0\}$. By Theorem 1, there exists an idempotent operator $R \in \mathcal{L}(H)$ such that $R(H) = H_T(F) = E_T(F)$, since every normal operator is (E)-super-decomposable operator. By Theorem of [13] and Theorem 5.2 of [18], we have

$$H_T(F) = \mathcal{E}(F)H = \bigcap_{\lambda \notin F} (T - \lambda)H.$$

This completes the proof.

Now we can prove the main result of this paper.

THEOREM 3. Let A be a semi-simple commutative complex Banach algebra with or without identity, and let $a \in A$ such that the multiplication operator T_a on A has the weak 2-spectral decomposition property. Then for any closed subset F of \mathbb{C} , there exists an idempotent element $r \in A$ such that

$$T_r(A) = \bigcap_{\lambda \notin F} (T_a - \lambda I)A.$$

Moreover, $T_r(A) = A_{T_a}(F) = E_{T_a}(F) = \{x \in A : supp \widehat{x} \subseteq \widehat{a}^{-1}(F)\}$ is an ideal of A, where supp \widehat{x} may be taken as the hull-kernel closure of the set $\{\phi \in \Delta(A) : \widehat{x}(\phi) \neq 0\}$ in $\Delta(A)$.

Proof. Assume that T_a has the weak 2-spectral decomposition property. At first, we claim that the Gelfand transform \widehat{a} is hull-kernel continuous on $\Delta(A)$. Suppose that \widehat{a} is not continuous for the hull-kernel topology of $\Delta(A)$. Then there exists closed $W \subseteq \mathbb{C}$ such that $\widehat{a}^{-1}(W)$ is not a hull in $\Delta(A)$. Let $\phi \in h(k(\widehat{a}^{-1}(W))) \setminus \widehat{a}^{-1}(W)$ and let $\lambda := \phi(a) \notin \widehat{a}^{-1}(W)$. Since T_a has the weak 2-spectral decomposition property, there exists $Y, Z \in Lat(T_a)$ such that

$$A = \overline{Y + Z}, \sigma(T_a|Y) \subseteq \mathbb{C} \setminus \{\lambda\}$$
 and $\sigma(T_a|Z) \subseteq \mathbb{C} \setminus \widehat{a}^{-1}(W)$.

For each $y \in Y$ there exists $u \in Y$ such that $y = (T_a - \lambda)u$. Thus $\phi(y) = (\phi(a) - \lambda)\phi(u) = 0$ and hence $\phi = 0$ on Y. Let $\psi \in \widehat{a}^{-1}(W)$ and $\mu := \psi(a) \in W$. For each $z \in Z$ there exists $v \in Z$ such that $(T_a - \mu)v = z$. Thus $\psi(z) = (\psi(a) - \mu)\psi(v) = 0$ and so $\psi = 0$ on Z. It follows from $\phi \in h(k(\widehat{a}^{-1}(W)))$ that $\phi = 0$ on Z. Thus $\phi = 0$ on $A = \overline{Y + Z}$. Since $\phi \in \Delta(A)$, this contradicts our assumption that \widehat{a} is hull-kernel continuous on $\Delta(A)$. Let $A_1 := A \oplus \mathbb{C}$ denote the unitization of a given commutative complex Banach algebra A without identity. It is clear that A_1 is semi-simple and \hat{a} is also continuous on $\triangle(A_1) = \triangle(A) \bigcup \{\phi_{\infty}\}\$, where each $\phi \in \triangle(A)$ is identified with its canonical extension to A_1 and $\phi_{\infty}(a+\lambda 1) := \lambda$ for all $a \in A$ and $\lambda \in \mathbb{C}$. Without loss of generality, we may assume that A is semisimple, commutative Banach algebra with identity. Given an arbitrary open cover $\{U_1, U_2\}$ of \mathbb{C} , choose a pair of open sets $W_1, W_2 \subseteq \mathbb{C}$ such that

$$\mathbb{C} \setminus U_1 \subseteq W_1 \subseteq \overline{W_1} \subseteq W_2 \subseteq \overline{W_2} \subseteq U_2$$
.

Then both $\widehat{a}^{-1}(\overline{W_1})$ and $\widehat{a}^{-1}(\mathbb{C} \setminus W_2)$ are compact with respect to the hull-kernel topology of $\triangle(A)$. By Corollary 3. 6. 10 of [17], there exists $r \in A$ such that

$$\widehat{r} = 0$$
 on $\widehat{a}^{-1}(\overline{W_1})$ and $\widehat{r} = 1$ on $\widehat{a}^{-1}(\mathbb{C} \setminus W_2)$.

Since $\hat{r}^2 = \hat{r}$, we obtain $r^2 = r$, by the semi-simplity of A. Let $T_r \in \mathcal{L}(A)$ be given by $T_r x := rx$ for all $x \in A$. It is easily checked

that $T_aT_r=T_rT_a$ and $T_r^2=T_r$. Let $\lambda\in\mathbb{C}\setminus U_1$. Then clearly

$$|(\widehat{a} - \lambda 1)(\phi)| > 0$$
 for all $\phi \in \widehat{a}^{-1}(\mathbb{C} \setminus W_1)$.

Apply Theorem 3. 6. 15 of [17] to obtain $c \in A$ such that $(\widehat{a} - \lambda 1)\widehat{cr} = \widehat{r}$ on $\Delta(A)$, which implies $(a - \lambda 1)cr = r$, i.e., $(T_a - \lambda I)ST_r = T_r$ where Sx := cx for all $x \in A$. Hence $(T_a - \lambda I)|T_r(A)$ is invertible and so $\sigma(T_a|T_r(A)) \subseteq U_1$. Proceeding in the same way, we obtain $\sigma(T_a|(I - T_r)(A)) \subseteq U_2$, and hence T_a is (E)-super-decoposable. If $Y \subseteq A$ is T_a -divisible subspace, then we have

$$Y = \bigcap_{\lambda \in \mathbb{C}} (T_a - \lambda I) Y \subseteq \bigcap_{\lambda \in \mathbb{C}} (T_a - \lambda I) A \subseteq rad(A),$$

where rad(A) denotes the radical of A. The semi-simplicity of A implies that

$$Y = \bigcap_{\lambda \in \mathbb{C}} (T_a - \lambda I)A = \{0\},\$$

and so $E_T(\phi) = \{0\}$. Hence by Theorem 1, $T_r(A) = E_{T_a}(F) = A_{T_a}(F)$. Since the spectral maximal space $A_{T_a}(F) = T_r(A)$ is hyperinvariant, $A_{T_a}(F)$ is an ideal of A. On the other hand, it follows from Theorem 6. 2. 5 of [5] that

$$A_{T_a}(F) = \{x \in A : supp \widehat{x} \subseteq \widehat{a}^{-1}(F)\}.$$

Finally, we claim that

$$A_{T_a}(F) = \bigcap_{\lambda \notin F} (T_a - \lambda I)A.$$

The inclusion $A_{T_a}(F) \subseteq \bigcap_{\lambda \in \mathbb{C} \setminus F} (T_a - \lambda I)A$ is clear from the elemen-

tary fact that $(T_a - \lambda)A_{T_a}(F) = A_{T_a}(F)$ for all $\lambda \notin F$. To prove the reverse inclusion, take any open neighborhood V of F. Then $\{V, \mathbb{C} \setminus F\}$ is an open covering of the complex plane \mathbb{C} . As T_a is (E)-superdecomposable, there exists an idempotent $R \in \mathcal{L}(X)$ commuting with T_a such that

$$\sigma(T_a|R(A)) \subseteq V$$
 and $\sigma(T_a|(I-R)(A)) \subseteq \mathbb{C} \setminus F$.

Let

$$Z := \bigcap_{\lambda \notin F} (T_a - \lambda I) A.$$

It is easily checked that.

$$(I-R)(Z)\subseteq igcap_{\lambda\in\mathbb{C}}(T_a-\lambda I)A\subseteq rad(A),$$

which implies that $Z\subseteq R(A)\subseteq A_{T_a}(V)$. Since $X_T(\cdot)$ is known to preserve intersection, $Z\subseteq\bigcap_{F\subset V}A_{T_a}(V)=A_{T_a}(F)$. Hence we have

$$A_{T_a}(F) = \bigcap_{\lambda \notin F} (T_a - \lambda I)A.$$

This completes the proof.

Note that the preceding proof shows that actually T_a is (E)-super-decompsable if and only if T_a is super-decompsable if and only if T_a has the weak 2-spectral decomposition property if and only if the Gelfand transform \hat{a} is hull-kernel continuous on $\Delta(A)$.

THEOREM 4. Let A be a commutative complex Banach algebra with or without identity, and let $a \in A$ such that the Gelfand transform \widehat{a} is hull-kernel continuous on $\Delta(A)$. Then for any closed $F \subseteq \mathbb{C}$, there exists an idempotent element $[r] \in B := A/rad(A)$, the coset of $r \in A$, such that

$$\begin{split} T_{[r]}(B) &= B_{T_{[a]}}(F) = E_{T_{[a]}}(F) = \bigcap_{\lambda \notin F} (T_{[a]} - \lambda I)B \\ &= \{ \ [x] \in B \ : \ supp \ \widehat{[x]} \subseteq \widehat{[a]}^{-1}(F) \}, \end{split}$$

where rad(A) denotes the radical of A.

Proof. It is clear that B := A/rad(A) is a semi-simple commutative Banach algebra. Let $\pi : A \longrightarrow A/rad(A)$ be the quotient map. Then by Theorem 23.5 of [4], the map

$$\pi^* : \triangle(A/rad(A)) \longrightarrow \triangle(A)$$

defined by $\pi^*(\phi) = \phi \circ \pi$ for $\phi \in \triangle(A/rad(A))$ is a homeomorphism. Hence $\widehat{\pi(a)} = \widehat{[a]}$ is hull-kernel continuous on $\triangle(A/rad(A))$, since \widehat{a} is hull-kernel continuous on $\triangle(A)$. It is easily seen that

$$T_{[a]}: A/rad(A) \longrightarrow A/rad(A),$$

given by $T_{[a]}[x] = [ax]$ for all $[x] \in A/rad(A)$, is (E)-super-decomposable. By Theorem 3, one has the results. This completes the proof.

An obvious combination of Theorem 3 and Theorem 2 of [6] leads to the following results.

COROLLARY 5. Let A be a semi-simple, regular commutative complex Banach algebra with or without identity, and let $a \in A$. Then for any closed subset F of C, there exists an idempotent element $r \in A$ such that

$$T_r(A) = A_{T_a}(F) = E_{T_a}(F) = \bigcap_{\lambda \notin F} (T_a - \lambda I)A.$$

The following Corollary applies, for instance, to any commutative C^* -algebra, since every commutative C^* -algebra is semi-simple and regular Banach algebra. We have the following.

COROLLARY 6. Let A be a commutative C^* -algebra, and let $a \in A$. Then for any closed $F \subseteq \mathbb{C}$, there exists an idempotent element $r \in A$ such that

$$T_r(A) = A_{T_a}(F) = E_{T_a}(F) = \bigcap_{\lambda \notin F} (T_a - \lambda I)A.$$

Proof. Every commutative C^* -algebra is regular and the hull-kernel topology coincides with the Gelfand topology on $\Delta(A)$. Thus T_a has the weak 2-spectral decomposition property. By Theorem 3, one has the results.

THEOREM 7. Let X be a complex Banach space, and let A denote a semi-simple commutative Banach algebra with identity. Assume that $\Phi: A \longrightarrow \mathcal{L}(X)$ is an algebra homomorphism. If $T_a \in \mathcal{L}(A)$ has

the weak 2-spectral decomposition property, then the corresponding operator $T := \Phi(a) \in \mathcal{L}(X)$ is (E)-super-decomposable.

Proof. It is easily checked that the Gelfand transform \widehat{a} is hull-kernel continuous on $\Delta(A)$. For every open covering $\{U,V\}$ of \mathbb{C} , choose a pair of open sets $G, K \subseteq \mathbb{C}$ such that $\overline{G} \subseteq U, \overline{K} \subseteq V$ and $G \cup K = \mathbb{C}$. Then both $\widehat{a}^{-1}(\mathbb{C} \setminus G)$ and $\widehat{a}^{-1}(\mathbb{C} \setminus K)$ are disjoint, compact with respect to the Gelfand topology of the compact space $\Delta(A)$. By Corollary 3. 6.10 of [17], we deduce that there exists $b \in A$ such that

$$\widehat{b} = 0$$
 on $\widehat{a}^{-1}(\mathbb{C} \setminus G)$ and $\widehat{b} = 1$ on $\widehat{a}^{-1}(\mathbb{C} \setminus K)$.

Let $R:=\Phi(b)\in\mathcal{L}(A)$. Clearly, T commutes with R. From $\widehat{r^2}=\widehat{r}$ on $\Delta(A)$, we know that $r^2=r$ by semi-simplicity of A and so $R^2=R$. We claim that $\sigma(T|R(X))\subseteq U$. Let $\lambda\in\mathbb{C}\setminus U$. Then $|(\widehat{a}-\lambda 1)|>0$ holds on the hull $\widehat{a}^{-1}(G)$. Thus we may apply Theorem 3. 6. 15 of [17] to obtain $d\in A$ such that $(\widehat{a}-\lambda 1)\widehat{d}=1$ on $\widehat{a}^{-1}(\overline{G})$. Since $\widehat{b}=0$ on $\widehat{a}^{-1}(\mathbb{C}\setminus G)$, we have $(\widehat{a}-\lambda)\widehat{b}\widehat{d}=\widehat{b}$ on $\Delta(A)$, which implies that $(a-\lambda)bd=b$. Let $S:=\Phi(d)\in\mathcal{L}(X)$. Apply the homomorphism Φ to the equation $(a-\lambda 1)bd=b$, we have $(T-\lambda I)SR=S(T-\lambda I)R=R$. Thus $(T-\lambda I)S=S(T-\lambda I)=I$ on R(X), the range of R. Hence $(T-\lambda I)R(X)$ is invertible, i.e., $\lambda\in\rho(T|R(X))$, and so $\sigma(T|R(X))\subseteq U$. A similar argument can be used to show that $\sigma(T|(I-R)(X))\subseteq V$. Hence T is (E)-super-decomposable. This completes the proof.

COROLLARY 8. In the situation of Theorem 7, if $\bigcap_{\lambda \in \mathbb{C}} (T - \lambda)X = \{0\}$, then for any closed $F \subseteq \mathbb{C}$, there exists an idempotent operator $R \in \mathcal{L}(X)$ such that

$$R(X) = X_T(F) = E_T(F) = \bigcap_{\lambda \notin F} (T - \lambda)X.$$

Note that for a given commutative, semi-simple and regular Banach algebra A over \mathbb{C} , the left regular representation $\Phi: A \longrightarrow \mathcal{L}(A)$ given by $\Phi(a) := T_a$ for all $a \in A$. It follows from [16] that T_a is (E)-super-decomposable. Moreover, every multiplication operator T_a on A satisfies

$$igcap_{\lambda \in \mathbb{C}} (T_a - \lambda) A \subseteq rad(A),$$

the radical of A, so that $\bigcap_{\lambda \in \mathbb{C}} (T_a - \lambda)A = \{0\}$, since A is semi-simple.

It follows from Corollary 8 that for each closed $F \subseteq \mathbb{C}$ there exists an idempotent operator $R \in \mathcal{L}(A)$ such that

$$R(A) = A_{T_a}(F) = E_{T_a}(F) = \bigcap_{\lambda \notin F} (T_a - \lambda)A.$$

References

- E. Albrecht, On decomposable operators, Integral Equations Operator Theory (1979), 1-10.
- E. Albrecht, On two questions of I. Colojoară and C. Foias, Manuscripta Math. 25 (1978), 1-15.
- 3. E. Albrecht and M. M. Neumann, Automatic continuity for operators of local type, in Radical Banach algebras and automatic continuity, Lecture Notes in Math 975, Springer, Berlin (1983), 342-355.
- 4. F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, New York, 1973.
- I. Colojoară and C. Foias, Theory of generalized spectral operators, Gordon and Breach, New York, 1968.
- S. Frunză, A characterization of regular Banach algebras, Rev. Roum. Math. Pures Appl. 18 (1973), 1057-1059.
- 7. H. Huang, Each hyperinvariant subspace for multiplication operator is spectral, Proc. Amer. Math. Soc., 106 (1989), 1057-1061.
- B. E. Johnson and A. M. Sinclair, Continuity of linear operators commuting with continuous linear operators II, Trans. Amer. Math. Soc. 146 (1969), 533-540.
- 9. R. Lange, Strongly analytic subspaces in operator theory and functional analysis edited by I. Erdelyi, Research Notes in Mathematics 38 Pitman, San Francisco (1979), 16-30.
- K. B. Laursen and P. Vrbová, Some remarks on the surjectivity spectrum of linear operators, Czech. Math. J. 39 (1989), 730-739.
- K. B. Laursen and M. M. Neumann, Decomposable operators and automatic continuity, J. Operator Theor 15 (1986), 33-51.
- M. M. Neumann, Commutative Banach algebras and decomposable operators, Mh. Math. 113 (1992), 227-243.
- V. Pták and P. Vrbová, On the spectral function of a normal operator, Czech. Math. J. 23 (1973), 615-616.
- V. Pták and P. Vrbová, Algebraic spectral subspaces, Czech. Math. J. 38 (1988), 342-350.
- 15. C. R. Putnam, Ranges of normal and subnormal operators, Michigan Math. J. 18 (1971), 33-36.

- 16. J. C. Rho and J. K. Yoo, (E)-super-decomposable operators, J. Korean Math. Soc. 30 (1993), 211-227.
- C. E. Rickart, General theory of Banach algebras, Toronto and London, New York, 1960.
- 18. A. M. Sinclair, Automatic contiuity of linear operators, London Math. Soc., Lecture Notes Series 21 Cambridge University Press, 1976.
- 19. P. Vrbová, Structure of maximal spectral spaces of generalized scalar operators, Czech. Math. J. 23 (1973), 493-496.

Jae Chul Rho Department of Mathematices Sogang University Seoul 121-742, Korea

Jong-Kwang Yoo Department of Mathematices Chodang University Muan 534-800, Korea