• Title/Summary/Keyword: k smooth spaces

Search Result 104, Processing Time 0.017 seconds

R-Fuzzy $\delta$-Closure and R-Fuzzy $\theta$-Closure Sets

  • Kim, Yong-Chan;Park, Jin-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.6
    • /
    • pp.557-563
    • /
    • 2000
  • We introduce r-fuzzy $\delta$-cluster ($\theta$-cluster) points and r-fuzzy $\delta$-closure ($\theta$-closure) sets in smooth fuzzy topological spaces in a view of the definition of A.P. Sostak [13]. We study some properties of them.

  • PDF

ITERATIVE PROCESS WITH ERRORS FOR m-ACCRETIVE OPERATORS

  • Baek, J.H;Cho, Y.J.;Chang, S.S
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.191-205
    • /
    • 1998
  • In this paper, we prove that the Mann and Ishikawa iteration sequences with errors converge strongly to the unique solution of the equation x + Tx = f, where T is an m-accretive operator in uniformly smooth Banach spaces. Our results extend and improve those of Chidume, Ding, Zhu and others.

  • PDF

Rate of Convergence in Inviscid Limit for 2D Navier-Stokes Equations with Navier Fricition Condition for Nonsmooth Initial Data

  • Kim, Namkwon
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.53-56
    • /
    • 2013
  • We are interested in the rate of convergence of solutions of 2D Navier-Stokes equations in a smooth bounded domain as the viscosity tends to zero under Navier friction condition. If the initial velocity is smooth enough($u{\in}W^{2,p}$, p>2), it is known that the rate of convergence is linearly propotional to the viscosity. Here, we consider the rate of convergence for nonsmooth velocity fields when the gradient of the corresponding solution of the Euler equations belongs to certain Orlicz spaces. As a corollary, if the initial vorticity is bounded and small enough, we obtain a sublinear rate of convergence.

SOBOLEV ESTIMATES FOR THE LOCAL EXTENSION OF BOUNDARY HOLOMORPHIC FORMS ON REAL HYPERSURFACES IN ℂn

  • Cho, Sanghyun
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.479-491
    • /
    • 2013
  • Let M be a smooth real hypersurface in complex space of dimension $n$, $n{\geq}3$, and assume that the Levi-form at $z_0$ on M has at least $(q+1)$-positive eigenvalues, $1{\leq}q{\leq}n-2$. We estimate solutions of the local $\bar{\partial}$-closed extension problem near $z_0$ for $(p,q)$-forms in Sobolev spaces. Using this result, we estimate the local solution of tangential Cauchy-Riemann equation near $z_0$ in Sobolev spaces.

GLOBAL GRADIENT ESTIMATES FOR NONLINEAR ELLIPTIC EQUATIONS

  • Ryu, Seungjin
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1209-1220
    • /
    • 2014
  • We prove global gradient estimates in weighted Orlicz spaces for weak solutions of nonlinear elliptic equations in divergence form over a bounded non-smooth domain as a generalization of Calder$\acute{o}$n-Zygmund theory. For each point and each small scale, the main assumptions are that nonlinearity is assumed to have a uniformly small mean oscillation and that the boundary of the domain is sufficiently flat.

CONVERGENCE AND ALMOST STABILITY OF ISHIKAWA ITERATION METHOD WITH ERRORS FOR STRICTLY HEMI-CONTRACTIVE OPERATORS IN BANACH SPACES

  • Liu, Zeqing;Ume, Jeong-Sheok;Kang, Shin-Min
    • The Pure and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.293-308
    • /
    • 2004
  • Let K be a nonempty convex subset of an arbitrary Banach space X and $T\;:\;K\;{\rightarrow}\;K$ be a uniformly continuous strictly hemi-contractive operator with bounded range. We prove that certain Ishikawa iteration scheme with errors both converges strongly to a unique fixed point of T and is almost T-stable on K. We also establish similar convergence and almost stability results for strictly hemi-contractive operator $T\;:\;K\;{\rightarrow}\;K$, where K is a nonempty convex subset of arbitrary uniformly smooth Banach space X. The convergence results presented in this paper extend, improve and unify the corresponding results in Chang [1], Chang, Cho, Lee & Kang [2], Chidume [3, 4, 5, 6, 7, 8], Chidume & Osilike [9, 10, 11, 12], Liu [19], Schu [25], Tan & Xu [26], Xu [28], Zhou [29], Zhou & Jia [30] and others.

  • PDF

A Case of Disseminated Multiple Glomus Tumors (파종성 다발성 사구종양 1례의 치험례)

  • Choi, Tae Hyun;Yeo, Hyeon Jung;Son, Daegu;Kim, Hyung Tae
    • Archives of Plastic Surgery
    • /
    • v.36 no.4
    • /
    • pp.493-496
    • /
    • 2009
  • Purpose: Glomus tumors are neoplasms that are composed of modified smooth muscle cells of the glomus body and multiple glomus tumor comprises 10% of all glomus tumors. We report a case of disseminated multiple glomus tumors. Methods: A 14 - year - old boy presented with multiple subcutaneous purple nodules on the right cheek, back, right arm, right hand dorsum, right fourth finger, and left ankle. Nodules on the back and right fourth finger were completely excised under local anesthesia and histopathologic examination was followed. Results: Histopathologic findings showed numerous dilated, cavernous - like, thin - walled, vascular spaces surrounded by one or a few layers of glomus cells. On immunohistochemical examination, glomus cells stain for smooth muscle actin, and endothelial cells stain for CD31. Those revealed multiple glomangiomas. Conclusion: A review of Korean literature revealed only one reported cases of disseminated multiple glomus tumors, so this is the second case to be reported in the Korean literature. In case of multiple soft tissue tumors, thorough physical examination and preoperative evaluation is needed.

NONEXISTENCE OF A CREPANT RESOLUTION OF SOME MODULI SPACES OF SHEAVES ON A K3 SURFACE

  • Choy, Jae-Yoo;Kiem, Young-Hoon
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.35-54
    • /
    • 2007
  • Let $M_c$ = M(2, 0, c) be the moduli space of O(l)-semistable rank 2 torsion-free sheaves with Chern classes $c_1=0\;and\;c_2=c$ on a K3 surface X, where O(1) is a generic ample line bundle on X. When $c=2n\geq4$ is even, $M_c$ is a singular projective variety equipped with a holomorphic symplectic structure on the smooth locus. In particular, $M_c$ has trivial canonical divisor. In [22], O'Grady asks if there is any symplectic desingularization of $M_{2n}$ for $n\geq3$. In this paper, we show that there is no crepant resolution of $M_{2n}$ for $n\geq3$. This obviously implies that there is no symplectic desingularization.